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ELECTRON WAVE INSTABILITIES  IN  A MAGNETOPLASMA 

CAUSED BY ELECTRON-NEUTRAL COLLISION$ 

By John Q. Howell 
Langley  Research  Center 

SUMMARY 

A new class of collision-dependent  electron  waves is found  in a non-Maxwellian 
Lorentz  magnetoplasma,  and it is shown  that  electron-neutral  collisions  may  cause  these 
waves  to  become  unstable.  The  Boltzmann  equation  with  collision  integral is solved 
while  assuming  propagation t o  be either  parallel  or  perpendicular  to  the  magnetic  field. 
Both  conductivity  tensors are derived  and  put  in a form  useful  for  numerical  calculations. 
The  full set of Maxwell's  equations is then  used  to  derive  the  dispersion  relations  for 
both  directions of propagation.  The  dispersion  relations are initially  solved  for a mono- 
energetic  electron  distribution  function  and  then  an  isotropic  distribution  with a peak of 
nonzero  half-width is treated. Some  consideration is also  given to  an  isotropic 
Maxwellian  distribution  both  with  and  without a bump  on  the tail. 

An an  example of propagation  parallel  to  the  magnetic  field,  transverse  electro- 
magnetic or "whistler"  waves  in a nitrogen  plasma are considered. A new collisional 
mode is found  with real frequency  near the electron  cyclotron  frequency,  and  under 
appropriate  conditions it may  be  either  convectively or absolutely  unstable.  Longitudinal 
or electrostatic  waves  propagating  perpendicular  to  the  magnetic  field  in a nitrogen 
plasma are also  considered.  A series of new collisional  modes  with real frequency  near 
the  electron  cyclotron  frequency  and its harmonics are shown  to  be  unstable  under  some 
conditions. For  both  directions of propagation,  the  electron  waves  can be unstable if a 
large  fraction of plasma  electrons  have  their  velocity  in a region  where  the  electron- 
neutral  collision  frequency  increases (or decreases) rapidly  enough.  The  requirement 
on  the  electron-neutral  collision  frequency is easily  met by nitrogen,  mercury,  and  the 
Ramsauer  gases.  

* The  information  in  this  paper is largely  based on a dissertation  entitled 
"Collisional  Effects on  Waves  in a Magnetoplasma"  submitted  in  partial  fulfillment of the 
requirements  for  the  degree of Doctor of Philosophy  in  Applied  Physics,  Stanford 
University,  Stanford,  California,  June 1970. 



INTRODUCTION 

In  recent  years  both  experimental   and  theoretical   investigations of collision- 
induced  instabilities  in a plasma  have  been  undertaken.  Most of this effort  has  been 
directed  toward  determining  the effect of electron-neutral  collisions on electron  waves 
in a weakly  ionized  plasma  where  electron-electron  and  electron-ion  collisions are neg- 
ligible. It has  been  found  that  both  convective  and  absolute  instabilities are possible if 
(1) the  electron  distribution  function is sufficiently  non-Maxwellian  and if (2) the  electron- 
neutral  collision  cross  section  increases (or decreases)  rapidly  enough  with  electron 
energy.  The  purpose of this paper is to  obtain  dispersion  relations  for  waves  in a weakly 
ionized  magnetoplasma by treating  electron-neutral  collisions  in  the  most  rigorous 
manner  possible,  and  then  to  solve  these  dispersion  relations  for realistic plasma  con- 
ditions.  There  may  be  electron-neutral  attachment  in  plasmas of this  type  but  the 
resulting  negative  ions  will  not  affect  the  waves  being  considered  because of their   large 
mass.  

Historical  Review of Previous  Work 

To  predict  the  effect of electron-neutral  collisions on waves  in a plasma, two 
approaches  have  been  utilized.  Some  workers  have  considered  the  effective  radiation 
temperature of the  plasma  whereas  others  have  determined  the  stabil i ty of waves  propa- 
gating  in  the  plasma.  The latter point of view is taken  in this report .  

In  1958  Twiss  (ref. l), while  investigating  the  radiation  spectra  from a plasma, 
found  that  under  some  conditions a non-Maxwellian  plasma  could  radiate  more  energy 
than it absorbs  over a region of the  spectrum.  Then  in  1961  Bekefi et al. (ref. 2) showed 
that  electron-neutral  collisions  could be responsible  for  such  enhanced  emission.  This 
phenomenon  was  investigated  experimentally by Fields et al. (ref. 3) and  they  found a peak 
in  the  radiation  spectra  from  some  plasmas at the  electron  cyclotron  frequency.  Both 
their  experimental  and  theoretical  work  showed  that  this  condition  occurred  when  the 
electron  energy  distribution  was  highly  non-Maxwellian  and  when  the  electron-neutral 
collision  cross  section  increased  rapidly  enough  with  velocity.  The  radiation  tempera- 
ture  approach was also  used  in  references  4  to  8  where  more  experimental   results are 
reported  and  in  references  9  to 12  where  further  theoretical  work is given. h r c e k  
(ref. 12) used a purely  quantum  mechanical  point of view  and  obtained  results  similar  to 
those of other  authors. 

Of those  authors  treating  the  collisional effects on waves  propagating  in a plasma, 
only  those  analyzing  electron-neutral  collisions by means of a realistic velocity-dependent 
collision  model are discussed  here.  In 1964 Drummond et al. (ref. 13) assumed  that  the 
electron-neutral  collision  cross  section  was  isotropic  but  velocity  dependent  and  derived 
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the  dispersion  relation  for  electrostatic  waves  in  an  unmagnetized  plasma.  They  recov- 
ered  the  well-known  Landau  dispersion  relation  in  the  collisionless  limit.  Derfler 
(ref. 14), as did Drummond,  assumed  the  electrons  to be colliding  with  infinitely  heavy 
neutrals  but  allowed  for  an  angular  dependence  in  the  collision  cross  section.  In  the 
l imit  of isotropic  collisions,  his  dispersion  relation is identical  to that of Drummond. 
Derfler solved  the  dispersion  relation  for a simple case and  discovered a group of poten- 
tially  unstable  collision-dependent  modes  he  called  "pseudo-sound  waves."  Suzuki 
(ref. 15), Idehara  and  Sugaya  (ref. 16), and  Shimomura  and  Mitani  (ref. 17) investigated 
the effects of electron-neutral  collisions  on  waves  in a magnetoplasma.  They all 
assumed a Lorentz  gas  model  (that is, infinitely  heavy  neutrals  and  ions)  and  allowed  for 
an  isotropic  velocity-dependent  collision  cross  section.  Suzuki  considered  transverse 
electric waves  propagating  parallel  to  the  applied  magnetic  field  and  found a new  mode 
with real frequency  near  the  cyclotron  frequency.  This  mode  was  unstable  under  some 
conditions  and  vanished  in  the  collisionless  limit.  Idehara  and  Sugaya  considered  waves 
propagating  perpendicular  to  the  magnetic  field  and  investigated  both  the  ordinary  and 
the  extraordinary  waves.  They  assumed  monoenergetic  electrons  and  found  that  either 
mode  may be unstable at frequencies  near  the  electron  cyclotron  harmonics.  However, 
their   resul ts  are valid  only  in  the  near  infinite  wavelength  limit.  Shimomura  and  Mitani 
also  considered  ordinary  waves  propagating  perpendicular  to  the  magnetic  field.  Unfor- 
tunately,  they  made  an error  in  solving  the  f irst-order  Boltzmann  equation  and  their  
conductivity  tensor is incorrect.  Their  solution  for  the  first-order  electron  distribution 
function  does  not  satisfy  the  differential  equation.  The  error is of such  nature,  however, 
that  their a33 t e r m  is correct,  and  hence  their  dispersion  relation  for  the  ordinary 
wave is correct.  They  also  assumed  monoenergetic  electrons  and  found  collision- 
induced  instabilities. 

Collision  Models 

When solving  the  Boltzmann  equation 

for  the  electron  distribution  function f (F,F,t), the  collision  model  assumed is very 
important  in  determining how easily  the  solution  will be obtained.  The  most  common 
(and  the  simplest)  approach  merely  ignores  collisions  altogether,  that is, 

($)cell = O 
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In  this  form  the  Boltzmann  equation is usually  called  the  Vlasov  equation.  On  the  other 
hand, for  elastic binary  collisions,  the  most exact collision  term  one  can  use  (and  the 
most  difficult  to  work  with) is the  Boltzmann  collision  integral 

where 0 is the  collision  cross  section  and F(G) is the  distribution  function of the 
particles  with  which  the  electrons are colliding.  The  velocities of an  electron  before 
and after the  collision are v' and F', and  the  before  and after velocities of the  particle 
with  which  the  electron  collided are v and v". The  differential  solid  angle  in  velocity 
space  in  the  center of m a s s   f r a m e  of reference is dS2. For   e lectrons  in  a weakly  ionized 
plasma,  electron-neutral  collisions are much  more  frequent  than  either  electron-electron 
or  electron-ion  collisions.  Hence,  in  this  case F(G) is the  distribution  function of the 
neutral  background  gas. 

The 
heavy  and 

where N 

where x 

Lorentz  gas  model  assumes  elastic  collisions  with  neutrals  that are infinitely 
stationary,  that is, 

F(?) = N6(3) 

is the  number  density of the  neutrals.  Equation (3) then  becomes 

is the  angle  between  and v" and dS2' is the  differential  solid  angle 
in v" space.  This  collision  model  was  used by Derfler (ref. 14) to  derive  the  disper- 
sion  relation  for  electrostatic  waves  in  an  unmagnetized  plasma.  Drummond, et al. 
(ref. 13),  Suzuki (ref. 15), Idehara  and  Sugaya (ref. 16),  and  others  have  assumed  that  the 
collision  cross  section is isotropic,  that is, u is a function of IT1 only.  In this case 
equation (5) trivially  becomes 

where v(v) = 4aNvu(v) is a velocity-dependent  collision  frequency. 

Wilensky (ref. 18), in  his  work on electrostatic  waves  in  an  unmagnetized  argon 
plasma,  showed  that  the  most  important  physics is in  the  energy  dependence of the  cross  
section  and  not  in  the  angular  dependence. He allowed  for  an  angular-dependent  cross 
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section  and  found  that  the  wave  dispersion  differed  very little from  that  given by the  iso- 
tropic  collision  model.  Consequently,  ignoring  the  angular  dependence as in  equation (6) 
should  be a very  good  approximation.  In  this  report  the  collision  models  given by equa- 
tions (5) and (6) are used  exclusively. 

In  an  attempt  to  put  the  Boltzmann  equation  in a more tractable form  than  the  col- 
lision  integral  allows, a large  number of approximate  collision  models  have  been  used. 
Dougherty  (ref. 19) in  his  investigation of the  upper  ionosphere  used a model  Fokker- 
Planck  equation 

where v is a constant  electron  collision  frequency  and i? and T are a velocity  and a 
temperature  which  Dougherty  chose so  that  the  generation-dissipation  rates  take on the 
proper  values as discussed later. This  collision  model is more  appropriately  used  when 
collisions  result  in  only  small  changes  in  the  velocity  vector of the  colliding  particle  and 
hence is most  appropriately  applied  to  coulomb  collisions.  This  equation is derived  in a 
more  general   form  from  equation (3) by  Holt and  Haskell  (ref. 20). On  the  other  hand, 
Bhatnager, Gross, and Krook (ref. 21) replaced  Boltzmann's  collision  integral by a simple 
dissipation  term 

($toll = v (fm - f )  

which  describes the relaxation of electron  velocities  to a local  Maxwellian  distribution 

-3/2 (.' - z)2 
f m  = (m:) exp 

vO 

Similarly,  Allis,  Buchsbaum,  and  Bers  (ref. 22) assumed  relaxation  to  some as yet 
unspecified  equilibrium  distribution  function fo  and  wrote 

= V ( f o  - f )  

Note  that  the last three  models all contain  an  average  collision  frequency v which  must 
be specified,  and  equations (7) and (8) have  other  unspecified  parameters.  These unknown 
parameters   should  in   pract ice  be specified so  that  the  principle of detailed  balancing is 
obeyed.  This  procedure  involves  taking  the  following  generation-dissipation rates of 
particles,  momentum,  and  energy: 
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I = s ( ~ ) c o l l  d3v 

4 G = m S F ( S )  d  3  v 

coll 

H = -  2 s v 2(s)coll d3v 

and  choosing  the unknown parameters  so  that  these rates take on their  proper  values. 
F o r  example, I should  be  chosen  equal  to  zero if no par t ic les  are generated by the 
collision  process. If the  collisions are between  particles of the  same  species,  then  the 
choice E = H = 0 should be made as Dougherty  did,  whereas  for  the  Lorentz  gas  model 
described earlier H should  be  equal  to  zero  but  not  equal  to  zero.  Achieving  the 
correct  generation-dissipation rates is not a problem  with  the  collision  models  expressed 
by equations  (3), (5), and (6) as they  automatically  take  on  the  correct rates to all orders ,  
and not just  to  the first three expressed by equations (11) to  (13). 

Outline of the  Present  Analysis 

A s  mentioned earlier, the  collision  models  expressed by equations (5) and (6) are 
used  exclusively  in  this  report.  Waves  proportional  to  exp(iwt - iE ?) are assumed 
and  the  Boltzmann  equation  with  equation (6) is solved  for  the  general  wavenumber k'. 
The  solution is then  specialized  to k' perpendicular  to  the  magnetic  field E, and  the 
conductivity  tensor  and  dispersion  relations are obtained.  The  stability  and  dispersion 
of the  longitudinal or  electrostatic  waves are investigated by numerically  solving  the 
appropriate  dispersion  relation.  The  stability  character of the  waves is determined by 
mapping  the real wavenumber ?is into  the  complex  frequency  plane by means of the  dis- 
persion  relation  and  then  applying  Derfler's  frequency  cusp  criterion  (refs. 23 to 26). 
In a somewhat  simplified  form  sufficient  for  use  here, if the  mapping  in  the  complex fre- 
quency  plane is above  the real frequency axis, the  plasma is stable. If it goes  below  the 
axis,  the  plasma is at least convectively  unstable. It is absolutely  unstable  only if a 
branch  point  can be located  either on the  mapping  but  below  the  real  frequency  axis  or  in 
a closed  region  above  the  mapping but  below  the real frequency  axis.  The  Boltzmann 
equation  with  equation (5) is solved  and  the  dispersion  relations  and  conductivity  tensor 
for  k' parallel  to  the  magnetic  field are obtained.  The  dispersion  relation  representing 
the  transverse  electromagnetic  waves is numerically  solved,  and  solutions of the  disper- 
sion  relations  for  various  isotropic  electron  distribution  functions are given. For propa- 
gation  both  parallel  and  perpendicular to the  magnetic  field, a monoenergetic  electron 

6 



distribution is treated first and  then a peaked  energy  distribution  function  having a peak 
of nonzero  half-width is considered.  Consideration is also  given  to a Maxwellian  dis- 
tribution  function  and  to a Maxwellian  with a bump on the tail. It is assumed  that elec- 
trons  collide  with  nitrogen  neutrals,  but  similar  results  would  be  obtained  for  any  gas 
having a steep  slope  in its electron-neutral  collision  cross-section  curve.  In  particular, 
the  Ramsauer  gases  (argon,  xenon,  and  krypton)  would  be  appropriate  because of their 
rapidly  increasing  collision  frequency  near  the  Ramsauer  minimum. 

SYMBOLS 

A 

al 

B 

CG 

CL 

CS 

C 

defined by equation (H5) 

defined by equations (27) 

defined by equation (37) 

parameter  used  in  equation (E13) 

defined by equation (H6) 

magnetic  field  vector 

zero-order  magnetic  field  vector  and  magnitude 

first-order  magnetic  field  vector 

Bernoulli  polynomials  (eq. (H9)) 

number of electrons  gaining  energy 

number of electrons  losing  energy 

constant, (eq.  (78)) 

constant  in  peaked  electron  distribution  (eqs. (73) and (78)) 

dummy  function  (eq.  (B8)) 

velocity of light 
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-c 
C velocity  parameter  in  equation (7) 

D,D1,D2,D,,D* dispersion  relations 

- 
D, Dij defined by equation (29) 

dS2 element of solid  angle  in v' space 

dS2' element of solid  angle  in F' space 

d r  3 differential  volume 

- 
E  electric  field  vector 

31 first-order  electric  f ield  vector 

Ex7Ey components of El along x and  y  directions 

E* symbolic  for E, f iEy  and  represents  right-  and  left-hand  polarized 
waves  (eq.  (122)) 

e unsigned  charge of electron 

61'Q3 unit  vectors  along X axis  and Z axis 

6,,6,,i5, unit  vectors  along x, y, and  z  directions 

F ( 3  particle  distribution  function  (eq.  (3)) 

pFq,2F3 generalized  hypergeometric  function 

F ( 4  dummy  function (eq. (11)) 

F (50) dummy  function  (eq.  (E8)) 

f electron  distribution  function 

f H  homogeneous  part of electron  distribution  function (eq. (B5)) 
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expansion  variable of first-order  electron  distribution  function  (eq. (84)) 

Maxwellian  electron  distribution  (eq. (9)) 

peaked  electron  distribution  function 

zero-order  electron  distribution  function 

first-order  electron  distribution  function 

components of first-order  electron  distribution  function  (eq. (M5)) 

transform of first-order  distribution 

momentum  generation  rate  (eq. (12)) 

defined by equations (36) and (52) 

defined by equation (97) 

defined by equation (109) 

energy  generation  rate (eq. (13)) 

defined by equation (H10) 

function 

collisional  frequency  slope  parameter  used  in  equation (67) 

defined by equation (21) 

defined by equation (H7) 

particle  generation-dissipation rate (eq.  (11)) 

unit  tensor 

modified  Bessel  function 

convenient  symbols  denoting  specific  integral  used  in  appendix E 
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) imaginary  part  of variable 

i fi 
-c 

j current  density (eq. (33)) 

j ext  driving  current  (eq. (121)) 

j,JY components of current  density  along X axis and Y axis (eq.  (121)) 

jo( ) , j l (  I7j2( 1,. . -,.in( 1 spherical  Bessel  functions of first kind 

symbolic  for j, L- i jy  (eq.  (122)) 

wavenumber  vector  and  magnitude 

defined by equation (30) 

indices of summation 

m a s s  of electron 

neutral  particle  density;  electron  number 

number of electrons  gaining  energy 

number of electrons  losing  energy 

electron  density 

unit  vector  along E 

components of vector ii 

polarization  vector 

probability of collision 

Legendre  polynomials 



T,v" 

vi 

vO 

v1 

v2 

v3 

associated  Legendre  polynomials 

pressure  in  equation (71);  dummy  variable  in  equation (H2) 

defined by equation (86) 

transfer  collision  cross  section (eq.  (87)) 

real p a r t  of variable 

space  position  vector 

symbolic  notation  given  in  equation (41) 

parameter  in  peaked  electron  distribution  (eq. (73)) 

temperature 

defined by equation (91) 

time  variable;  dummy  variable  (eq.  (B17)) 

dummy  variable  (eq. (B17)) 

velocity  vector  (eq. (3)) 

defined by equation (H9) 

velocity  vectors 

component of velocity  vector 

thermal  speed;  velocity  at  maximum of peaked  distribution  function 

thermal  speed  (eq.  (78)) 

location of peak  in  peaked  distribution (eq. (78)) 

component of velocity  along Z axis 
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weights of Gauss  quadrature  rule (eq. (G2)) 

weights of Gauss  quadrature  rule  along  contour (eq. (18)) 

coordinate axes 

nodes of Gauss  quadrature  rule  (eq. (G2)) 

parameters  in  complex  contour  (eqs. (12) and (13)) 

spherical  harmonic 

defined by equation (N8) 

F r i ed  function 

nodes of Gauss  quadrature  rule  along  contour (eq. (17)) 

proportion of electron  distribution  function  that is Maxwellian (eq. (78)) 

q 9 9 , .  - " q o  collision  frequency  function  parameters  (eq. (70)) 

0s 

r( ) gamma  function 

Y parameter  in  complex  contour (eq. (13)) 

6 (VI Dirac  delta  function 

b r , s  Kronecker  delta 

defined by equation (98) 

'ij k permutation  tensor 

€0 free-space  dielectric  constant 

rl normalized  frequency, o v / w c  

e y e 1  spherical  coordinate  angles  in  velocity  space 
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Boltzmann's  constant 

defined  by  equation (55) 

defined by equation (99) 

defined after equation (N4) 

defined by equation (117) 

permeability of free space 

collision  frequency (eq. (6)) 

transfer  collision  frequency  (eq. (88)) 

collision  frequency at infinite  electron  velocity 

average  collision  frequency  (eq.  (77)) 

dummy  variable  (eq. (59)) 

polarization  tensor  (eq. (C11)) and  its  components 

charge  density 

collision  cross  section 

expansion  constant of collision  cross  section  (eq. (52)) 

conductivity  tensor 

r, r' ,  r", r r dummy  variables  (appendix B) 1' 0 

cp spherical  coordinate  angle  in  velocity  space;  also a dummy  integration 
variable 

WP'V') defined by equation (28) 
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X scattering angle 

w frequency  angle 

- 
wc,wc  cyclotron  frequency  (eq.  (22)) 

WH hybrid  frequency, 

w P 
1/2 

plasma  frequency, (ne2/me o) 

WV abbreviated  notation  for w - i v  (eq. (23)) 

Subscript: 

coll  collision 

Vector  symbols  without  arrows  denote  the  magnitude. An asterisk  denotes a com- 
plex  conjugate  and a circumflex  denotes a transform. 

THEORY OF WAVES  PROPAGATING  PERPENDICULAR 

TO  THE MAGNETIC FIELD 

In  this  section  dispersion  relations  for  waves  propagating  perpendicular  to  an 
applied  magnetic  field Eo are  derived.  A  Lorentz  gas  model is assumed,  and  the 
electron-neutral  collision  cross  section is assumed  to  be  isotropic.  The first order  dis-  
tribution  function is derived  and  from it the  conductivity  tensor  for  the  general case of 
k' at any  angle  to go is obtained.  This  tensor is then  specialized  to  propagation  per- 
pendicular to  the  magnetic  field,  and  the  dispersion  relations are obtained.  A  discussion 
of some of the  analytic  properties of the  dispersion  relation  that  describes  electrostatic 
or  longitudinal  waves is given. 

Conductivity  Tensor  for  General k' With  Isotropic  Collisions 

In  the  Introduction it was  stated  that  the  Boltzmann  equation  for  electrons  colliding 
elastically  and  isotropically  with  infinitely  heavy  neutrals is 

- + v . -= - :(E + 7 X B) - = -v(v)f(T) + - 1 f(v")dS2' af - af - af v (v) 
at a r  av' 437 
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,.- .- 

where dW is an element of solid angle in 7' space. This equation is linearized  by 
making  the  "ansatz"  (initial  assumption) 

f(T) = f0(? + f1(7) 

" -c 

B = Bo + B1 J 
and  in  the  usual  manner  consider  the  f irst-order  terms  (subscript  1) to   be  small   per tur-  
bations  about  the  much  larger  zero-order  terms  (subscript 0). Then  obtain  the  zero- 
order  equation 

and  the  first-order  equation 

In  appendix A the  solution of the  zero-order  equation is found to  be  any  isotropic  distri- 
bution  function fo(v) and  hence  the  term (77 X gl) - af au' in  the  first-order  equa- 
tion is identically  zero. To solve  equation (17), use is made of a Fourier   t ransform  in  
space  defined by 

0 1  

and a Laplace  transform  in  time  defined by 

00 

f(v',F,w) = Io f(v',F,t)e-Stdt 

where s is chosen  equal  to iw.  Applying  these  transforms  to  equation (17) o r  equiva- 
lently  assuming  that all the  variables are proportional  to  exp(iwt - iE F) yields 
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where 

w y  = w - iv(v) (23) 

The  Laplace  transform  analysis  was  used so  that  the  rules of the  inverse  Laplace 
transform  could  be  used later to  define  the  dispersion  relations  properly.  Even  though 
no initial  conditions are allowed  for,  the  dispersion  relations  that are derived  will 
properly  describe  any  waves  that  are  excited  and  will  predict  the  onset of wave 
instabilities. 

Equation (20) is solved by the  method of characterist ics  in a manner  similar  to 
that  used by Omura (ref. 27). A parameter  T is introduced s o  that ? = v ' ( ~ ) .  The 
characteristic  equations  then  become 

dfl 
i (w ,  - k - v f l  + - = h(F) -. - ) A  dT 

In  appendix B these  equations are solved  and  the  solution is found  to  be 

* 

f l  = - e A(?) 
mWC 

+ 

where 
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m.. = D.. = n.n. + 6ij - n.n. cos  cp + Eijknk s in  cp 
l J  1J 1 J  ( 1 J  

(29) 

k].. = L.. = n.p.cp + p.. - n.n. s in  cp - n (cos cp - 1) 
1J 4 1 J 1J 1 J 'ijk k (30) 

By direct substitution of equation (26) into  equation (20), one  can  show that the  solution 
has  been  obtained. 

Equation (26) was  also  obtained by Idehara  and  Sugaya (ref. 16)  in a somewhat  more 
complicated  form.  However,  they  were  unable  to  simplify  it  to  obtain  relatively  simple 
dispersion  relations of wide  validity, as will be done  here. 

In  the  collisionless  limit  equation (26) yields 

f =- e A(T) 
1 mwc 

This  result  was  obtained  by  Omura  (ref. 27) and  others  and  can  be  used  to  derive 
Bernstein's  (refs. 28 and 29) dispersion  relation  describing  the  propagation of cyclotron 
waves  in  the  Vlasov  limit. 

In  appendix C, Maxwell's  equations are stated  and  the  general  dispersion  relation 
is derived  for a conductivity  tensor 0 defined by 

Using  equation (33) and  taking = BG3 in  equation (26) yields 

2 
0.. = - 10 vfb(v)L v.A. (v')dS2 dv 
1J wC 1 J  1 

1 Aj(F)dS2 s yo vie-'('P9v3drp di2 

1 + - G(v) iv(v) 
W 1- (34) 
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where 

r sin cp (1 - cos 50) 0 1  

3 1 

This  tensor is the  exact  conductivity  tensor  appropriate  to  the  model  assumed.  In  the 
next  section  this  tensor is put  in a usable  form after assuming k'l E, and  the  wave 
dispersion  relations are then  obtained  from  Maxwell's  equations.  In a later section 
k' 11 E is assumed  and  again  the  simplified  conductivity  tensor  and wav.e dispersion 
relations are obtained. 

Conductivity  Tensor  and  Dispersion  Relations  for k' 1 E 
In  this  section  the  conductivity  tensor  given by equation (34) is simplified by con- 

sidering  propagation  strictly  perpendicular  to  the  magnetic  field,  for  example, k' = kcl. 
For  convenience,  the  symbolic  notation 
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where q = wv/wc will be used. 

In appendixes D and E after  much  algebraic  manipulation, the conductivity  tensor 
is given by 

E =  

where 

- 
"11  "12 

'(52  O22 

0 0 "33J 
- 

u22 = 4riw E 
2 
P O  

+ (2) 2 
dv 

* v3fb 
"33 = 4niw;E0 Io wy 6 + + I)(= + 3) ]Idv 1 

(44) 

(4 5) 

I 
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Equations (42) to (46) give  the  conductivity  tensor  in a form  suitable  for  computations. 
Shimomura  and  Mitani (ref. 17) attempted  to  derive this tensor  also,  but  they  made  an 
error  in  solving  the  first-order  Boltzmann  equation  given  here by equation (20). Their 
e r r o r   w a s  of such a nature,  however,  that  they still obtained  the  correct  expression  for 
~ 7 ~ ~ .  It ag rees  with  equation (46) when  allowances are made  for  differences  in  notation. 

To  obtain  the  dispersion  relations,  assume k' = kgl  in  equation  (C17),  and  use 
equation (42) to  obtain 

D(w,k) E 

'1 1 l+- 
iwEo 

'12 
iwE 

'12  '22 2 
" 

iwe  1 +- - (2) 
1 W E  

0 0 '3 1 + -  3 2 

= o  (4  7) 

By  expanding  the  determinant,  two  uncoupled  dispersion  relations are obtained: 

Dl(W,k) E 1 + - - = o  
1WE 0 

and 

The  waves  described by Dl(w,k) are characterized by El I( Eo and are  usually  called 
ordinary  waves,  since  they are unaffected by the  magnetic  field  in  the  cold  plasma  limit. 
This  same  dispersion  relation  was  derived  in  an  approximate  form  and  discussed by 
Idehara  and  Sugaya (ref. 16) for  a monoenergetic  electron  distribution.  Shimomura  and 
Mitani (ref. 17) also  obtained  equations (48) and (46) and  found  that a monoenergetic  dis- 
tribution  function  leads  to  collisional  instabilities if the  electron-neutral  collision  fre- 
quency  increases-  rapidly  enough  with  velocity.  This  dispersion  relation is not  discussed 
further  in  this  report .  

In  the  limit of very  small  phase  velocity,  that is, kc/w >>> 1, equation (49) yields 

"1 1 
1 W E  0 

D2(w,k) =: 1 + - = 0 
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Using  equation (43) and  dropping  the  subscript 2 on D then  yields 

D(U,k) = 1 + 4a dv = 0 
o + ivG(v) 

where 

The  waves  described by this  equation are characterized by El 11 k’ and  in  the  collision- 
less limit  have  been  variously  called  extraordinary,  longitudinal,  electrostatic,  cyclotron, 
or  Bernstein  waves.  They  were  discussed  in a review  paper by Crawford  (ref. 30) in 
1967. The  dispersion  relation  describing  these  waves is generally  derived  in a much 
simpler  manner by using  the  electrostatic  approximation  ab  initio.  This  derivation  has 
been  made  in  appendix F where  equation (51) is obtained  more  directly.  This  dispersion 
relation is discussed  further in the  next  section  and is later  solved  for  several  inter- 
esting  cases. 

Discussion of Electrostatic  Dispersion  Relation 

In  the  preceding  section,  the  dispersion  relations  for  waves  propagating  perpendic- 
ular  to  an  applied  magnetic  field  in a Lorentz  gas  plasma  were  derived.  These  disper- 
sion  relations  were  exact  in  the  framework of the  collision  model  assumed,  that is, an 
isotropic  velocity-dependent  electron-neutral  collision  cross  section.  The  quasi-static 
approximation  was  then  made  to  obtain  the  dispersion  relation  for  cyclotron or 
Bernstein  waves.  The  properties of this  dispersion  relation wi l l  now be  discussed. 

F rom the series expansion  given by equation (52), G(v) can  be  written  alterna- 
tively as a generalized  hypergeometric  function 

Consequently,  the  theory of asymptotic  expansions of hypergeometric  functions  can be 
used  to  help  evaluate G(v) (ref. 31). 

In  the  limit of zero  magnetic  field,  that is, oc - 0, equation (51) reduces to 

( >)2 1; vfb (1 - X coth- ‘X) 
D(w,k) = 1 - 4a - dv = 0 

1 + k. coth-lX 
kv 

(54) 
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Ill1 I I I Ill Ill I I I 

where 

W V  x = -  
kv (55) 

This  dispersion  relation  was  obtained by Drummond et al. (ref.. 13) and  Derfler  (ref. 14) 
and  represents  electrostatic  waves  in  an  isotropic  Lorentz  gas  plasma.  Hence,  equa- 
tion (51) has  the  correct  form  in  the  l imit  of a vanishing  magnetic  field. 

On the  other  hand,  in  the  presence of a magnetic  field,  but  in  the  limit of zero  col-  
lisions,  equation (51) yields 

D(W,k) = 1 + 417 (>)2 - .$: vfbG(v) dv = 0 

If fo is taken  to  be  Maxwellian,  that is, 

then  equation (56) yields 

00 

D(w,k) = 1 - 2($7 2 (kvo/wc)21 1-3.5 . . . (22 - 1) 
= o  

1 =1 2qq2 - 1) . . . (112 - 12) 

where 

.' wc 

This  relation  can  be 
and 29),  given by 

D(w,k) = 

where 

shown  to  be  equivalent  to  Bernstein's  dispersion  relation  (refs. 28 

(59) 

\ 2  
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However  in  practice,  equation (58) has  proven  to be much  more  efficient  for  computation. 
The  collisionless  electrostatic  dispersion  relation,  given by either  equation (58) or 
equation (59), is characterized by undamped  pass  bands at frequencies  just  above  each 
electron  cyclotron  harmonic  separated  by  bands  that are very  heavily  damped.  In  the 
limit of zero  magnetic  field,  neither of these  equations  predict  Landau  damping  since  the 
infinite series in  both  equations  represents  only  the  contribution  from  an  integral  along 
the real axis  in  velocity  space.  However,  in  this  limit  the  electrostatic  waves are 
damped as Landau  (ref. 32) and  others  (ref.33)  have  shown. To recover  Landau  damping 
properly it is necessary  to  indent  the  velocity  contour  around a singularity  that   crosses 
the real axis as the  magnetic  field  vanishes.  Baldwin  and  Rowlands (ref. 34) have  shown 
how Landau  damping  can  be  recovered by rewriting  equation (59) in  an  integral  form  and 
eventually  obtain  the  Landau  dispersion  relation 

D(w,k) = 1 - (Zr Z' (g) = 0 

where Z'  is the  derivative of the  Hilbert  transform of the  Gaussian as tabulated by 
Fried  and  Conte (ref. 35).  However,  the  theory  given  here  quite  easily  yields  equa- 
tion (60) from either equation (56) as the  magnetic  field  vanishes o r  from  equation (54) 
as collisions  vanish, i f  i t  is assumed, of course,  that f o  is chosen  to  be  Maxwellian. 
When  doing this, one must  keep  in  mind  that  the  dispersion  relations  are  defined  for  k 
real, and w on a Laplace  integral  path. For  other k and w values,  the  appropriate 
analytic  continuation  must be taken by choosing  the  correct  contour i n  velocity  space. 

The  dispersion  relation  given by equation  (51) is considerably  different  from  those 
given by cruder  collision  models. Use of the  simple  constant  collision  frequency  model 
of Allis et al. (ref.  22),  that is, 

(3co l l  
= V ( f o  - f )  

has  the  effect of replacing w by w - i v  in the collisionless  equation.  In  an  attempt  to 
improve on this collision  model, a variation of the  Bhatnagar-Gross-Krook (BGK) colli- 
sion  model  has  been  used (ref. 36), 

where no is the  zero-order  electron  density  and n1 is the  first-order  electron  den- 
sity.  In  addition  to the replacement of w by w - i v ,  this  model  also  replaces w 2 

P 
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by [l - i (v /wUw2 in  the  collisionless  equation.  Note  that  neither of these  collision 
models  correctly  produces  the  denominator  in  the  integrand of equation  (51).  This 
denominator is of major  importance  in  determining  the  characteristics of the  solutions 
of the  dispersion  relation as it tends  to  cancel  the  resonance effect of the  integrand  when 
the  frequency is near a multiple of the  cyclotron  frequency.  Hence  one  must  conclude 
that  the  collision  models  expressed by equations (61) and (62) can only  be  applied  in  the 
near-collisionless  and  off-resonance  limit. 

P 

Next  note  that  equation  (51)  contains  only  even  powers of k, and  hence  the  following 
symmetry  relation  holds: 

Consequently,  the  roots of D(o,O) = 0 are branch  points  in  the  mapping of k into  the 
complex  frequency  plane.  The  location of these  points is of prime  importance  in  deter-  
mining  the  stability  character of the  waves  (refs. 23 to 26). From  equation (51) also 
obtain  the  symmetry  relation 

D(w,k) = D*(-w*,-k*)  (64) 

This  relation is, of course,  a statement of the  Kramers-Kronig (ref. 37) relationship  and 
is a direct  consequence of the  causality  principle  which  was  built  into  this  theory  by 
using the Laplace  transform  analysis  in  time. 

Combining  equations  (63)  and (64) yields  then  for k rea l  

D(w,k) = D*(-w*,k) (6 5) 

Hence,  only  complex  frequency  solutions  need  to  be  determined  in,  for  example,  the  right 
half-plane.  These  properties are important  when  the  dispersion  relation  (eq. (51)) is 
solved fo r  several  different  electron  distribution  functions  in  the  next  section. 

SOLUTIONS O F  THE  ELECTROSTATIC DISPERSION RELATION FOR 

PROPAGATION  PERPENDICULAR  TO  THE MAGNETIC FIELD 

In  this  section  the  dispersion  relation is solved  for  electrostatic  waves  propagating 
perpendicular  to  the  magnetic  field  for  several  isotropic  electron  distribution  functions. 
A s e r i e s  of new collisional  modes are found  that  depend  for  their  existence on  both a 
highly  non-Maxwellian  electron  distribution  function  and a velocity-dependent  collision 
frequency.  Both  convective  and  absolute  instabilities are discovered  when  the  electron 
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distribution  function is monoenergetic. A Lorentz  gas  plasma  with  nitrogen  neutrals is 
also  considered  and  instabilities are again  found  when a peaked  electron  distribution 
function is assumed.  When a Maxwellian  electron  distribution  function is chosen, it is 
found  that  the  wave  dispersion  predicted by the  isotropic  collision  frequency  model is 
very  close  to  that  predicted by a constant-collision-frequency BGK model.  Also  an 
electron  distribution  function  consisting of both  peaked  and  Maxwellian  components is 
briefly  considered  and  the  stabilizing  influence of the  Maxwellian  population is 
demonstrated. 

Monoenergetic  Electron  Distribution 

For  the  initial  analysis of the  dispersion  relation  (eq.  (51)) it is assumed  that  the 
zero-order  electron  distribution  function is monoenergetic,  that  is, 

Substituting  this  relation  into  equation (51) leads  to  the  dispersion  relation 

(i)z f Fy -- i v )  (G + vo,G') + ivG(G - hG - hq + v2G2 
D(W,k) E 1 - } = 0 (67) 

kvO (w + ivG)2 

where 

v = v(vo) 
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The series representations  given  for G and G' were  found  to  converge  very  rapidly; 
thus,  equation (67) was  easily  solvable by numerical  methods. 

Idehara  and  Sugaya  (ref. 16) considered  the  same  problem  but  they  did  not  derive 
the  relatively  simple  dispersion  relation  given by equation  (67).  They  instead  made 
approximations  that are valid  only  for  very  small  wavenumbers (or large  wavelengths). 

Before  solving  equation (67) the  roots of D(w,O) = 0 are investigated,  since  from 
a preceding  section,  these  roots are known to  correspond  to  branch  points  in  the  complex 
frequency  plane. By  expanding G and G' in  equation (67)  and  keeping  only t e rms   t o  
lowest  order  in k, the  dispersion  relation  yields 

2 
+ w [(v2 + u:) + w i  (3v2 + - 2hv2/] + i v w p k  2 2  (h/3 - 1) - w:(l + h/3J = 0 (68) 

This  equation,  being a complex  fifth-order  polynomial  in w,  has  five  complex  roots. 
However,  because of the  symmetry  relations  expressed by equation  (65),  there  can  be 
only three  independent  solutions.  One  root  must  have a ze ro  real part,  and  each  pair of 
the  other  four  must  be  related by wA = -u& where wA and uB denote  one  pair of 
the  four  remaining  roots.  One of these   pa i r s   has  a real part  near  the  hybrid  frequency 

wH = 6: + w: and  the  other  has a real  part  near  the  cyclotron  frequency.  The  precise 

location of these  roots  will, of course,  depend on the  plasma  parameters  chosen. If 
these  roots lie below the  real  axis,  then  an  absolute  instability is indicated,  whereas if 
they are above  the  axis,  there is no absolute  instability but there  may or  may  not  be a 
convective  instability (refs. 23  to  26). By solving  equation (68) for  various  values of the 
slope  parameter h, i t  is found  that  the  root  with  the real part   near  the  cyclotron  fre- 
quency  leads  to  an  absolute  instability  for  large  positive  values of h, for  example, 
h > 3.. However,  for  large  negative  values of h, the  roots  with real pa r t s   ze ro  and  near 
the  hybrid  frequency  both  lead  to  an  absolute  instability.  In  addition  to  these  solutions, 
one  can  show  analytically  that as k - 0, equation  (67) is solved by w = 0 and 
w = *nuc + i v  where  n = 2,3,4,. . . . 

With  the  help of these  solutions,  it is possible  to  numerically  solve  the  dispersion 
relation  (eq.  (67))  with  k real and  greater  than  zero  to  obtain  the  desired  complex  fre- 
quency  solutions  in  the  right  half-plane.  This  procedure  leads  to  the  mappings of the 
real wavenumber axis into  the  complex  frequency  plane  shown  in  figures 1 to 4. 

In  figure 1 for  h = 4,  an  absolute  instability at Re(w) = wc is predicted  since one 
of the  branch  points  (indicated  by  the  small  circles) is in  the  lower  half-plane.  In  this 
figure  only  the  first three t e rms  of an  infinite series of modes are plotted.  The  modes 
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Figure 1.- Real wavenumber ax i s  mapped i n t o  complex frequency  plane 
with a positive  slope  parameter. The branch  point  ( indicated by 
a small c i r c l e )  below t h e   r e a l  (o axis   ind ica tes   an   absolu te  
i n s t a b i l i t y .  The upper   set  of modes are the  modif ied  col l is ionless  
modes. The bottom s e t   a r e   t h e   c o l l i s i o n a l  modes. The hybrid fre- 
quency i s  ind ica ted  by the   so l id   square  symbol on t h e   r e a l  LU axis .  

near  higher  cyclotron  harmonics  are  similar  to  the  two  near w = 3wc in  figure 1. The 
two modes  with  Re(w) = 0 are collision-dependent  modes  and i n  the  collisionless  limit 
they  both  coalesce  to  the  point w = 0. They are not of much  interest  here  since  in a real 
plasma  they  would  be  masked by ion  effects.  The  three  upper  modes  in  figure 1 are 
modified  collisionless  modes.  In  the  collisionless  limit,  these  modes  have w real solu- 
tions  and  would  hence  map  into  lines  on  the real frequency  axis.  The  three  lower  modes 
in  this  figure are collision-dependent  modes,  and  in  the  collisionless  limit  they  coalesce 
into  the  points w = *noc  (n = 1,2,3,. . .). Note  particularly  the  absolutely  unstable  mode 
with  Re(w) = wc. The  location of the  branch  point  associated  with  this  mode is given by 
one of the  roots of the  fifth-order  polynomial (eq. (68)). If either v = 0 or  h = 0, the 
o rde r  of this  equation is reduced by two as can  be  seen by reobtaining  the new equation 
from  equation  (67).  The  roots  that  vanish  have real par t s   near  f w C  and  hence it is 
concluded  that  these  modes are introduced by collisions.  The  branch  points  associated 
with  the  other  collisional  modes  (and  with  the set of modified  collisionless  modes  also) 
are located at o = fnwc + i v  (n = 2,3,4,. . .). One  can  show  analytically  that i f  either 
h or  v goes  to  zero,  the  collisional  modes  vanish  and  the  branch  points are then 
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Re (w/w,) 

Figure 2.- Real wavenumber a x i s  mapped i n t o  complex  frequency  plane 
with a negat ive  s lope  parameter .  The branch  point  at  t h e  hybrid 
frequency i s  i n   t h e   l o v e r  complex  frequency  plane so t h a t   t h e  
plasma i s  absolu te ly   uns tab le .   Bote   tha t   the   modi f ied   co l l i s ion-  
l e s s  moaes a r e  below the c o l l i s i o n a l  modes rather  than  above as 
i n   f i g u r e  1. Hybrid  frequency i s  i n d i c a t e d  by a so l id   squa re  
symbol.  Small c i rc les   denote   b ranch   po in ts .  

associated only  with  the  collisionless  modes.  These  branch  points  cannot  lead  to  abso- 
lute  instabilities  for  any set of plasma  parameters.  At most, these  modes  may be con- 
vectively  unstable  unless  there is another  branch  point  below  the real frequency axis but 
above  the  mapping of the real k axis.  No branch  points of this  type  were  found. Any 
other  branch  points  in  the  lower  frequency  plane  may  be  shown  to  be  ignorable.  For 
large k, the  mappings  appear  to  approach  the  points o = noc  + i v  (n = 1,2 ,3 , .  . .), but 
this   resul t   was not  shown  conclusively. It is not  expected,  however,  that  anything of 
physical   interest   occurs  at  k values  larger  than  those  shown. 

In  figure 2 it is seen  that   for h = -4, there  are two branch  points  in  the  lower half 
plane.  Note  that  the  position of the  modes  has  reversed.  The  modified  collisionless 
modes are on the  bottom,  and  the  collisional  modes are on the  top.  The  unstable  modes 
are hence  the  modified  collisionless  modes,  and  there is an  absolute  instability at the 
hybrid  frequency.  The  modes  near  Re(o) = 0 are a l so  shown here,  but as before, are 
of only  minor  interest.  Henceforth,  they  will  not be considered. 
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Figure 3.- Real  wavenumber a x i s  mapped i n t o   t h e  complex  frequency  plane. 
The branch   po in ts   a re  a l l  above the r e a l  LU a x i s   b u t   t h e  mapping 
does   d ip   be low  th i s   ax is   and   ind ica tes  a convec t ive   i n s t ab i l i t y .  
Hybrid  frequency  denoted  by  a  solid  square  symbol;  branch  points  are 
denoted by s m a l l   c i r c l e s .  

In  figures 3 and 4, cases   that  are convectively  unstable are shown.  Note  that  the 
branch  points all lie above  the real frequency  axis so  that  there is no  absolute  instability. 
However,  the  mapping of the real wavenumber  axis  dips  below  the real frequency  axis  and 
indicates a convective  instability.  The  unstable  modes  in both of these  f igures are colli- 
sion  dependent  and  vanish  in  the  collisionless  limit  where  the  waves  supported by the 
plasma are known to  be stable (ref. 36). Furthermore,   for  large  coll ision  frequencies a 
damping effect is evident as shown by the fact that  the v = 0 . 0 5 ~ ~  case in  figure 4 is 
more  unstable  than  the v = 0 . 1 ~ ~  case in  figure 3. Hence there   must  be some  inter-  
mediate  collision  frequency  (and  hence  neutral  gas  density)  for  which  the  growth  rate 
Im(u)  would reach a maximum. Note also  that   f igures 3 and 4 are for  h = 2. Values 
of the  slope  parameter  in  this  range are common  in  gases  that are used  in  laboratory 
discharge  plasmas.   For   this   reason  i t   appears   that   th is   theory  wil l   f ind  important  
applications  in  predicting  cyclotron  wave  propagation  through  plasmas.  More realistic 
electron  distributions are treated in  subsequent  sections. 

It should be pointed  out at this  point  that a spherical  shell  distribution as considered 
here  is unstable  even  in  the  collisionless  limit  for  some  ranges of the  plasma  parameters  
(ref. 36). However,  for  the cases investigated  here  and  in  the  remaining  part of this   sec-  
tion,  the  collisionless  limit  predicts  only stable or  evanescent  waves.  Hence,  one  can 
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Figure 4.- Real wavenumber ax i s  mapped i n t o   t h e  complex frequency  plane 
f o r  a convectively  unstable  case. e b r i d  frequency  indicated by a 
sol id   square symbol; branch  points are denoted by smal l   c i rc les .  

truly  say  that  the  electron-neutral  collision  process is responsible  for  the  predicted 
instabilities. 

Peaked  Electron  Distribution 

In a previous  section  equation (51) is solved  for a monoenergetic  electron  distribu- 
tion  function  and  collision-induced  instabilities are found  for  some  ranges of the  slope 
parameter 

In  particular,  unstable  modes  near  the  cyclotron  harmonics are found  for  values of h 
near 2 and  above. For h negative,  unstable  modes  with real frequency  near  zero  and 
near  the  hybrid  frequency are found.  Hence it seems  likely  that  collisional  instabilities 
of this  type  should  be  found  in a plasma if there   were  present  (1) a background of neutrals 
fo r  which h 5 2 over  some  region or  regions of velocity  space,  and (2) a sharply  peaked 
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electron  distribution  function  centered  in  one of these  regions.  In  the  remainder of this  
section it is shown  that this is indeed  possible. 

The  measured  electron-neutral  collision  frequency  for  nitrogen  exhibits a sharp 
peak -(refs. 38 and 39) as shown  in  figure 5. The  parameter  h  ranges up to 5; thus 
cri terion (1) is met. To use  the  experimental  values  in  the  dispersion  relation, first fit 
a rational  polynomial 

t 1 
v 
0 I 2 3 4 

VELOCITY IN 

~~ 

Figure 5.- Rational   funct ion f i t  t o  experimental   electron-neutral  
co l l i s ion   f requency   for   n i t rogen  (ref. 38) and  slope  parameter 
from ra t iona l   func t ion .  
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to  the  experimental  probability of collision  for  nitrogen  measured by Brode (ref. 38). 
Then  obtain  the  collision  frequency (ref. 39) from 

v(v) = - pPcv 273 
T (7 1) 

where p and T are, respect ively,   the   pressure  in   torrs   and  the  temperature   in  OK of 
the  nitrogen. Note that  since p is proportional  to  T,  only  the  neutral  particle  number 
density is a parameter  in  the  collision  frequency  function.  Instead of number  density, 
however,  the  collision  frequency at infinite  electron  velocity v, defined by 

will be used. A least-squares  fit of equation (70) to  the  experimental  probability of col- 
lision  for  nitrogen  (and  mercury) (refs. 38  and 40) led  to  the  parameters  given  in  table I. 
The  quality of the  fit  for  nitrogen  can be seen  in  f igure 5. 

TABLE 1.- LEAST SQUARES FIT  TO  EXPERIMENTAL  PROBABILITY 

OF COLLISION FOR NITROGEN AND MERCURY* 

L 
(“2 + ff2v + ff4 v + ff v + ff8 

(v2 + Q5v + a5) y + oj,v + %) (v - ffl0) 
) ( 2  6 ) 

where PC is in  crn2  and v i s   i n  ““1 

%2 

ff3 

ff4 

“5 

ff6 

9 
3 
%3 

(“10 

Nitrogen 

274.304 

-2.58343 

-3.16090 

4.28551 

2.55450 

-3.35392 

-5.25412 

3.09938 

12.5096 

-4.55542 

Mercury 

381.030 

.531224 

-. 107263 

.516368 

.475607 

-.717384 

-.840921 

.132412 

.180940 

-7.01816 
* References 38 to  40. 
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To meet  cri terion (2), the  distribution  function, 

fo(V) = fs(v) ='- cs (" - )s ,-;(./.o,, 
2nvo 3 vo 

where 

cs = (30(+3)'2 (9) 
is used.  This  distribution  function  has a peak at vo and is shown  plotted  in  figure 6. 
The  half-width of the  peak is a transcendental  function of s and is not  conveniently  used 
as a parameter.  However,  the  half-width  increases (1) proportionally  with vo and/or 
(2) as s becomes  smaller.  The  electron  distribution  function  (eq.  (73)) is normalized 
according  to 

1 fo(v)d3v = 1 (74) 

Once  the  distribution  function fo(v) and  the  collision  frequency  function v(v) 
are specified,  the  dispersion  relation  in  equation (51) can be solved. It is necessary  to  
evaluate  the  velocity  integral  numerically  but  this is easily  done by using a Gauss  quadra- 
ture  rule.   The  details  of this  integration  procedure are given  in  appendix G. When 

VELOCITY IN a 
Figure 6.- Nomalized peaked distribution function. 
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carrying  out  this  integration, it was  necessary  at  times  to  use  an  asymptotic  expansion 
for  G(v).  Since G(v) was known to be a hypergeometric  function (see eq. (53)), it was 
possible  to  utilize  the  asymptotic  expansions of generalized  hypergeometric  functions 
given by Meijer  (ref. 31). This  expansion is given  in  appendix H. Note  also  that  the 
integrand  in  equation (51) will  have  poles  wherever  the  denominator is zero.  Once  the 
poles  are  located  in  velocity  space, it is necessary  to  determine  the  correct  integration 
contour  before  trying  to  solve  the  dispersion  relation.  This  determination' is made by 
recalling  that  equation (51) is defined  for k real   and w on a Laplace  integral  path 
(LIP). Usually,  the real velocity  axis  proved  to be a valid  contour, but occasionally,  it 
was  necessary  to  integrate  along a deformed  contour as described  in  appendix I. The 
scheme  described  worked  very  well  but is only  one of many  that  could  be  used. 

To  determine  the  stability of the  waves  predicted by equation (51) for  the  case  being 
considered in this  section,  it  was  decided  to  map  the real wavenumber axis into  the 

s = 2 0  
v,, = 1 . 2 5 m  
wp=2wc 

0 

- .02 

f6 Jb 

22 I Y 
I I I I 1 

I .o 2.0 - 3.0 
Re ( w  /w, 1 

(a) vm = 0 . 5 ~ ~ .  

Figure 7.- Mapping of real wavenumber k i n t o   t h e  complex  frequency 
p lane .   P lo t  shows absolutely  unstable  waves.  Hybrid  frequency i s  
i n d i c a t e d  by  a so l id   squa re  symbol; branch  points   are   denoted by 
s m a l l   c i r c l e s .  
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Figure 7.- Concluded. 

complex  frequency  plane. If instabilities of an unknown nature  are  present,  this  method 
seems  to  be a more  useful  approach  than,  for  example,  mapping  from  the  frequency  plane 
into  the  wavenumber  plane. 

Figures  7  to 9 show  the  results of such a mapping.  Because of the  symmetry 
relations  expressed by equations (63) and (65), it is necessary only  to  consider  k > 0 
and  to  look  for  roots  in  the  right  half  frequency  plane.  Figure  7(a)  shows a case that is 
absolutely  unstable  because of the  branch  point at w = wc. The  electron  distribution 
function  peak is at vo = 1.25fi and  from  figure 5 it can be seen  that  this  point is the 
approximate  location of the  most  positive  slope of the  collision  frequency  function.  The 
three  lower  modes  in  figure  7(a)  represent  the new collisional  modes  described earlier 
and  vanish as the  collisionless  limit is approached.  The  three  upper  modes are modifi- 
cations of the  collisionless  modes  but are damped  here  unlike  in  the  collisionless  limit. 
It is interesting  to  note  that  the  modes  shown  in  figure  7(a) all come  from  their own 
branch  points at k = 0, whereas  in  the  monoenergetic  electron  distribution case, there  
were  sometimes two modes  arising  from a single  branch  point. 

The  case  shown  in  figure 7(b) is identical  to  that  shown  in  figure  7(a)  except  for a 
lower  collision  frequency.  Note  that  there are now more  unstable  modes;  thus, it 
appears  that  high  collision  frequencies  tend  to  damp  even  the  collisional  modes.  Since 
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Figure 8.- Mapping of real wavenumber k into t h e  complex  frequency 
p lane .   P lo t  shows convect ively  unstable  waves. Hybrid frequency 
i s  i n d i c a t e d  by  a so l id   square  symbol;  brnnch  points  are denoted 
by small c i r c l e s .  

these  modes  also  vanish  at  zero  collision  frequency,  there is a particular  collision fre- 
quency,  and  hence a particular  neutral  gas  pressure,  at  which  the  collisional  cyclotron 
waves  are  most  unstable. 

In  figure 8 is shown a case where  the  electron  distribution  function  half-width is 
approximately  twice  that  shown  in  figure  7(b).  (See  fig. 6.) Note  that  the first mode  has 
changed  from  absolutely  unstable  to  convectively  unstable  and  the  third  mode  has  become 
stable.  Hence,  electron  distribution  functions  with  wider  peaks  tend  to  be  more  stable 
than  those  with  narrow  peaks. 

In  figure 9 a case  with  the  electron  distribution  function  peak  located on the  negative 
slope of the  collision  frequency  curve is considered. A s  in  the  case of the  monoenergetic 
distribution  function,  the  location of the  modes is reversed  and  the  coll isional  modes  are 
very  heavily  damped.  However,  the case in  figure 9 is a stable  situation  unlike  the one 
presented  in  figure 2. Consequently, if the  peaks  were  made  sufficiently  narrow,  the  case 
given  in  figure 9 would  become  absolutely  unstable  because of the  branch  point  with real 
frequency  near  the  hybrid  frequency.  However,  the  case of a positive  slope  parameter 
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Figure 9.- Mapping of real  wavenumber k i n t o   t h e  complex  frequency 
p lane .   P lo t  shows s t a b l e  waves.  Hybrid  frequency i s  i n d i c a t e d  
by a so l id   squa re  symbol;  branch  points are denoted by s m a l l   c i r c l e s .  

seems  to  be of more  physical  interest  because of the  large  number of gases  having 
regions of positive  slope  in  their  collision  frequency  curves.  Consequently,  the  negative 
slope case wi l l  not be  investigated  further  here. A case  with  large  half-width, s = 1 
and vo = 1.05fi, was  also  considered  briefly.  It  was  found  that  the  collisional  mode 
with real frequency  near  the  cyclotron  frequency  was  convectively  unstable  but  that all 
other  modes  were  stable. 

Earlier  it  has  been  shown  that  collisional  instabilities are possible  in a plasma if 
a large  percentage of the  electrons are in a region  in  velocity  space  where  the  collision 
frequency  increases  (or  decreases)  rapidly  with  velocity. If the  collision  frequency 
slope is positive,  there  may  be  an  absolute  instability  at  the  cyclotron  frequency  and  con- 
vective  instabilities at the  higher  harmonics. If the  collision  frequency  slope is negative, 
there  may  be  an  absolute  instability at the  hybrid  frequency  and  convective  instabilities 
at frequencies  between  the  cyclotron  harmonics.  The  occurrence  and  strength of these 
instabilities  depend  very  strongly on (1) the  width of the  peak  in  the  electron  distribution 
function  and (2) the  slope of the  collision  frequency  in  the  region of the  peak. It is diffi- 
cult  to  give  more  precise  statements  about  the  occurrence of these  collisional  instabili- 
ties; thus  it is necessary  to  consider  each case separately. 
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Maxwellian  Electron  Distribution 

In  this  section  equation (51) is solved  with  the  same  collision  frequency  function as 
in  the last section, that is, equation  (72),  but  instead of a peaked  electron  energy distri- 
bution  function a Maxwellian  distribution  function 

is used. 

In  figure 10 the real wavenumber axis is mapped  into  the  complex  frequency  plane 
and  the  modes  shown are of the  modified  collisionless  type.  These  modes  cannot  be 
unstable  since a Maxwellian  plasma  must  be stable. As k becomes  large,  the  mappings 
apparently  approach  the  points w = nuc (n = 1,2,3,. . .). This statement,  however,  was 
not  shown  conclusively  either by numerical  or  analytical  means.  The  collisional  modes, 
that  were  often  unstable  for  the  peaked  electron  distribution  function,  were  not  found  in a 
Maxwellian  plasma.  Apparently,  these  collisional  modes are present  only if  the  electron 
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Figure 10.- Mapping of real  wavenumber k into  the  complex  frequency 
plane for a Maxwellian  electron  distribution.  Hybrid  frequency  is 
denoted  by  a  solid  square  symbol;  branch points are  denoted  by 
small  circles. 
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distribution  function  has a region of positive  slope.  To  investigate  the  disappearance of 
these  modes  further,  the  isotropic  distribution  function  given by 

was  briefly  considered  and it was found  analytically  that  the  collisional  mode  did  not 
exist.  In  support of this  argument,  Bekefi et al. (ref. 41) found  that,  in  general,  there 
must be a region  where af av > 0 for  collisional  instabilities  to  exist.  However,  they 
used a radiation  temperature  approach  and  could not say  anything  about  the  existence  or 
nonexistence of the  actual  collisional  mode. 

0 1  

Since  the  waves  present  in a Maxwellian  plasma are stable,  the  complex  k  roots 
for  real w may  be  interpreted,  according  to  established  practice, as spatially  damped 
or  growing  waves. This representation is relevant  to  laboratory  experiments  since  one 
often  excites  the  plasma at some real frequency  and  measures  the  complex  and  real  parts 
of the  wavenumber.  The  results of such a mapping are shown  in  figure 11. The  case 
shown here  was  solved  also by Tataronis (ref. 36) by using a constant  collision  frequency 
BGK model,  that is, equation (62). Because of the  presence of the  velocity-dependent 
collision  frequency  in  equation  (51),  the  temperature of the  Maxwellian  electron  distribu- 
tion.function  did  not  normalize  out as in  his  case,  and so a thermal  speed of vo = 1 . 5 G  
was  chosen as representative of values  found  in a laboratory  plasma.  For  the  collision 
frequency  parameter vm, a value  was  chosen s o  that  the  average  collision  frequency 
given by 

(v) = Iow v(v) fo(v)  4rv 2 dv 

was   the   same as the  constant  collision  frequency  used by Tataronis.   From  figure 11 it is 
seen  that  the  two  models  differ  but not substantially.  There  appear  to  be no important 
differences,  unlike  in  the case of the  peaked  distribution  function  where  the  collisional 
modes  do  not  exist  for  other  collision  models.  Hence, it would seem  that  for a 
Maxwellian  plasma, it is not necessary  to  use  the  exact  collisional  model  considered 
here  unless  very  precise  results are desired. 

Sum of Maxwellian  and  Peaked  Electron  Distributions 

Since it was  found  that a peaked  distribution  function  could  lead  to  collision-induced 
instabilities,  one  might  wonder  what  portion of the  distribution  function  must  be 
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Maxwellian  before  the  waves  become stable. To answer  this  question,  the  electron dis- 
tribution  function is chosen  to be 

where 

c, = (fiv1)-3 

Note  that a gives  the  proportion of the  total  electron  population  that is Maxwellian. 
This  distribution  function  also  obeys  the  normalization  criterion  (eq. (74)). 
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Figure 13.-  Normalized  distribution  function  consisting  of  peaked 

and  Maxwellian  components  (eq. (78)). Points A and B in 
figure l2. 

Parameters  were  then  chosen  that   were known to  be  absolutely  unstable,  that is, 
s = 30, v2 = 1.25*, and v, = 0 . 1 ~ ~ .  The  dispersion  relation  was  solved  for  various 
values of a and v1 to  obtain  the  instability  boundaries  in  the  a,vl  plane  shown  in 
figure  12.  The  mode  considered  here  was  the  collisional  mode  that  has  Re(w) = wc. 
On the  lower  curve  in  figure 12, k = 0 since  the  branch  point  in  the  complex  frequency 
plane is given by the  root of D(o,O) = 0. On the  upper  curve  the  mapping of the real k 
axis into  the  frequency  plane  dips down and  just  barely  touches  the real frequency axis 
but  does  not  go  below it. At the  point of contact  it  was  found  that k = 2.5WC/v2. 

Since  an  absolute  instability  occurs at zero  group  velocity (aw/ak = 0), it is not  too 
surprising  to  find  that  low-temperature  Maxwellians  affect  the  waves a great  deal  since 
there would  be  proportionally  more  electrons  near  zero  velocity.  However, at higher 
temperatures it is somewhat  surprising  to  see  that  as much as 95 percent  Maxwellian is 
required  to  stabilize  the  unstable  collisional  mode.  In  figure  13 is shown a plot of the 
distribution  function (eq. (78)) for  a case on each of the  boundary  lines  in  figure  12 
(points A and B). Even  though  there are appreciable  numbers of Maxwellian  electrons, 
the  distribution  function is still highly  non-Maxwellian. 
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Synopsis of Numerical  Results 

Briefly, it has  been  found  that a rigorous  treatment of electron-neutral  collisions 
in a non-Maxwellian  Lorentz  magnetoplasma  predicts a new series of electrostatic  modes 
that  vanish  both  in  the  collisionless  and  Maxwellian  limits.  Solutions of the  wave- 
dispersion  relation  show  that  these  modes  may  be  unstable  for  some  plasma  parameters. 
Both  convective  and  absolute  instabilities  were  found  near  the  cyclotron  frequency  whereas 
only  convective  instabilities  were  found at the  cyclotron  harmonics.  In  addition, it was 
found  that  there  could  be  present  an  absolute  instability  near  the  hybrid  frequency  and 
convective  instabilities at frequencies  between  the  cyclotron  harmonics. It is well known 
that  cyclotron  harmonic  waves  may  be  unstable  in  the  collisionless  limit  for  some of the 
electron  distribution  functions  considered  in  this  section.  However, all cases  investigated 
here are stable o r  evanescent  in  the  collisionless  limit;  therefore,  the  electron-neutral 
collision  process is indeed  responsible  for  the  predicted  instabilities. 

THEORY OF WAVES  PROPAGATING  PARALLEL 

TO THE MAGNETIC FIELD 

In  this  section  waves  propagating  along  the  direction of the  applied  magnetic  field 
are considered  for  both  isotropic  and  anisotropic  collision  models.  The  general  case of 
anisotropic  collisions is considered  initially  and  the  first-order  distribution  function is 
wri t ten  in   terms of a s e t  of inhomogeneous  partial  difference  equations.  After  special- 
izing  to  waves  propagating  parallel  to  the  magnetic  field,  these  equations are solved  and 
the  conductivity  tensor  and  dispersion  relations are obtained.  The  isotropic  collision 
model is then  considered  and  the  conductivity  tensor  and  dispersion  relations are again 
derived.  It is shown  that  in  the  limit of isotropic  collisions,  the  dispersion  relations 
found from  the  anisotropic  collision  frequency  model are equivalent  to  those  found  when 
collisions are assumed  to be isotropic  in  the  beginning.  Some of the  analytic  properties 
of the  dispersion  relations are discussed  and  comparison is made  with  other  collision 
models. 

First-Order  Distribution  Function  With  Anisotropic  Collisions 

In  the  Lorentz  gas  model it is assumed  that  the  ions  and  neutrals are infinitely 
heavy  and  that  the  plasma is weakly  ionized so  tha t  electron-neutral  collisions are much 
more  frequent  than  either  electron-electron o r  electron-ion  collisions.  The  Boltzmann 
equation  for  electrons  can  be  written as 
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where x is the  angle  between v and Tf. The  number  density of the  neutrals is N, 
and  o(v,x) is the  differential  scattering cross section  describing  the  electron-neutral 
collision  process.  This  equation is linearized by making  the  ansatz 

f(v') = f o ( q  + f l ( q  

- 
E = O + E 1  

- -  - 
B = Bo + B1 

The  zero-order  equation 

and  the  first-order  equation 

(T x 'jc) 
at aF av' av' 

where wc = e E  m a r e  then  obtained.  The  solution of the  zero-order  equation 
(appendix A) is any  isotropic  distribution  function  fo(v)  and  hence  the  term 
(F X El) - a f o / a v '  in  the  first-order  equation is identically  zero. A s  done  previously, 
the  Fourier  transform  in  space  and  the  Laplace  transform,  in  time,  corresponding  to  the 
wave  representation  exp(iwt - ig - F) are  taken  to  obtain 

- 
0 1  

- -  .afl 
i (w  - v' k) f l  - (.' x GC) . -= - - - e El .-  a f O  

av m a 7  

Expanding fl(w,k-,?) in  spherical  harmonics  in  velocity  space  yields 

1=0 m=-1 
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where  Y 

equation (83) yields 
17m (8 ,q )  = c" 4 ~ ( 1  + ')(' + m)! - Py(cos  8)eimq.  Substituting  this  relation  into 

where 

In  appendix J i t  is shown  that  for all m, 

Q1,m = Q1= 277 1; o(v,x) [1 - P 1 1  (cos x )  sin x dx (87) 

where  P,(cos x) is the  Legendre  function of degree 1.  Then by following  Allis 
(ref. 42) and  Derfler  (ref.  14),  the  transfer  collision  frequencies are defined as 

and  equation  (85)  then  yields 

Multiplying this equation by Y* (0,Cp) and  performing  an  integration  over  the  solid 
angle dS2 = sin 0 dB dq,  an  inhomogeneous  difference  equation is obtained 

r,s 

where 

The  integral  can  be  easily  evaluated  for  general k to  give a partial  difference  equation 
f o r  fr,S7 but  instead it will  be  specialized  to  the  case of k parallel  to  the  magnetic 
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field.   For  this  case,  . k' = vk cos  8 and  the  integral  becomes 

From  equation (90) the  difference  equation 

is obtained.  Note  that  this  equation is an  ordinary  difference  equation  in  the  index r a t  
constant s and is readily  solvable by use of standard  techniques.  This  equation is 
solved later in  this  section  to  obtain  the  conductivity  tensor  and  dispersion  relation. 

For   the case k'l E, equation (90) would  lead  to a partial  difference  equation,  that 
is, one  in  which  both  the  indices  change.  This  type of equation is not  readily  solvable by 
using  standard  techniques  and is not  considered  in  this  report.  Note,  however,  that  the 
isotropic  collision  model  for k'l 5 was  treated earlier. 

Conductivity  Tensor  and  Dispersion  Relations for  

k' 11 5 With  Anisotropic  Collisions 

The  conductivity  tensor  for'  the case of propagation  parallel  to  the  magnetic  field 
wi l l  now be  sought.  Equation (84) is substituted  into  the  current  equation 

- 
j = 0 - E = -en 1 7f^,(a)d3v 

to  obtain 

(94) 

Note  that  only f l , - l ,  fl,oy and f are needed  to  find  the  conductivity  tensor E ,  and 
with  this  in  mind  the  solution of equation (93) is expressed  in   terms of a continued  fraction 
as 
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fl,s = gsT1,s 

where 

and 

3/ikv 4 - s2 9 - s2 16 - s2 n2 - s 2  
gs = os + 3x1,s - 5x2,s - 7%,s - 9x4,s - 

. . .  . . .  - (2n + 1)h - 
"7 s 

w - iv, + sw 
'n,s - 

- C 
kv 

(s = *1) 

(s = 0) 

(97) 

(99) 

s = 0, +1, -1 

The  continued  fraction  notation  used  here is defined  in  references  43  and 44. By combining 
equations (95) and  (96),  the  conductivity  tensor  may  be  written as 

where 

2  2n 
03 

00 
2 2a 3 '  

033 = Iom v3fbgo dv 
2 4a 
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From  appendix  C,  with k' = kG3 in  equation  (C17),  the  dispersion  function is 

0 

D(w,k) = = o  -ol2/iw€ 1 + (all/iueo) - (ck/w)2 0 

0 0 + (n33/iwt0) 

Expansion of the  determinant  yields  two  uncoupled  dispersion  relations 

DE(w,k) = 1 + - - O33 - 0 
iwc  

ck 2 all f iol2 
D,(w,k) E 1 - (-) W + 

iwe  
= o  

By using  equation  (103)  for C J ~ ~ ,  equation (105) becomes 

2 
DE(w,k) = 1 + - 4ni 3 lom v3fbgo  dv = 0 

3 w  

This  dispersion  relation  represents a purely  longitudinal  electrostatic  wave  that is not 
affected by the  magnetic  field.  This  same  dispersion  relation  was  found by Derfler 
(ref. 14) for  an  unmagnetized  plasma  and is not considered  further  here.  Substituting 
for  ul l  and u12 in  equation (106) yields 

2 2nw 2 
D,(w,k) = 1 - (G) W + 2 wk lom g,(v) v2fb(v)dv = 0 

where g, is the  continued  fraction 

This  dispersion  relation  describes  transverse  electromagnetic  waves  propagating  parallel 
to  the  applied  magnetic  field,  that is, left-  and  right-hand  circularly  polarized  waves. 
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The  dispersion  relations  derived  in  this  section  (eqs. (107) and  (108))  exactly 
describe  the  dispersion of waves  propagating  along  the  magnetic  field  in a Lorentz  gas 
plasma. If an  anisotropic  electron-neutral  collision  cross  section o(v,x) is given,  one 
can  obtain  the  transfer  collision  frequencies  from  equations (87) and (88) and  then,  in 
principle,  solve  the  dispersion  relations.  Often,  in  practice,  only  the  velocity  dependence 
of the  collision  cross  section is available  and  in  this case the  isotropic  collision  model is 
of more  interest .  This case is considered  in  the  next  section. 

Conductivity  Tensor  and  Dispersion  Relations  for 

k‘ 11 E With  Isotropic  Collisions 

In  this  section  it is assumed  from  the  beginning  that the electron-neutral  collision 
process  is isotropic.  This  procedure was followed earlier for  general  k  where  the 
calculation  started  with  the  Boltzmann  equation  given by equation (14) and a conductivity 
tensor 0 given by equation (34) was found. In appendix K this 0 is specialized  to 
propagation  parallel  to  the  magnetic  field  to  obtain 

where 

all = -io E - V 

P O  s fbvt v  2 - kv3 2 d3v 
wc - (“v - kv3) 

2 sf””’ W C 3 
O12 = wpEo 7 2 2 d v  

wc - (“v - kv3) 

47~iw E w 2 
033 = - k2 som vf;(’ -it coth-:X)dv 

1 + - coth- X kv 

W 

kv 

w v  = o - iv(v) 
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After  writing d3v = v2  sin 0 de d q  dv, the  angular  integrals  in  equations (111) and (112) 
can  be  evaluated  exactly  but it is easier here   to  leave them  in  their  present  form  for now. 
Using  equation (105) and 033 from  equation (113) yields 

where 

This  equation  describes a purely  longitudinal  electrostatic wave as does  equation (107) 
and  Derfler  (ref. 14) has  shown  that  in  the  limit of isotropic  collisions,  equation (107) 
reduces  to  equation  (114). 

From  equations  (106),  (lll),  and  (112),  the  following  dispersion  relation  for  trans- 
verse  electromagnetic  waves is obtained: 

D,(w,k) = 1 - (=) ck + 1 1  

Then  since d v = v2  sin 0 de d q  dv,  the  integrals  over  the  angles  can  be  evaluated  to 
obtain 

3 

where 

wv f w x =  C 
f kv 

In  appendix L it is shown  that  equation  (108) is identical  to  equation (116) if isotropic  col- 
lisions are assumed  in  the  former.  In  appendix M equation (116) is derived  in a much 
simpler but less rigorous  manner.  The  dispersion  relation  expressed  by  equation (116) 
is discussed  further  in  the  next  section  and is solved  subsequently. 
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Discussion of the  Transverse Wave  Dispersion 

Relation  for k' 11 
If one  goes  through  the  derivation of the  dispersion  relation (eq. (116))  carefully, it 

is apparent  that  the  integral  term  in  equation (14) has no contribution as was shown  in 
reference 45. This  condition is true only for  an  isotropic  collision  process  and  for 
transverse  waves  propagating  parallel  to  the  magnetic  field.  Hence,  the  collision  model 

will  give  the  identical  dispersion  relation. If there  is no velocity  dependence of the  col- 
lision  frequency  in  equation  (118),  then  the  constant  collision  frequency  model of Allis 
is obtained.  Hence,  the  dispersion  relation  for  constant  collision  frequency is obtained 
merely by setting v equal  to a constant  in  equation  (116).  This  model is often  used 
because of its  relative  simplicity  both  in  derivation  and  solution.  In  the  case of a 
Maxwellian  electron  distribution  function,  that is, equation  (75), i t  is found  in  appendix N 
that  this  model  yields  the  dispersion  relation 

D,(w,k) = 1 - (g)2 + x Z (  ' ') = 0 
w f W  

UkvO kvO 

where Z(Xo) can  be  writ ten  in  terms of the  complex  conjugate of the  Fried  function 
(ref. 35) (plasma  dispersion  function) by 

This  dispersion  relation  has  been  previously  obtained by Scarf (ref. 46),  Lee (ref. 47), 
and  others. 

In  order  to  show how the  dispersion  relation  given by equation (108) or (116) deter-  
mines  the  propagation  characteristics of waves, it may  be  assumed  that  there is present 
a localized  driving  force  given  by 

Substituting  this  equation  and  equation (110) into  Maxwell's  equations  and  performing 
appropriate  manipulations  yields 
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where 

E, = Ex f iEy 

and 

Hence, it is seen  that  D - (w,k)  and  D+(o,k) represent  right-  and  left-hand  polarized 
waves,  respectively. 

When  solving  the  dispersion  relation, it is important  to  keep  in  mind  that  equa- 
tion (116) is defined  for  k  real  and w on a Laplace  integral  path.  For  this  case  the 
real v-axis is the  proper  contour as indicated. If solutions  for k(w real) are desired, 
it is necessary  to  use  the  appropriate  analytic  continuation of D(w,k)  which is found by 
deforming  the  contour  in  complex  velocity  space so  that no singularit ies  cross  the  con- 
tour  while w is moved  from  the  Laplace  integral  path  (LIP)  to real frequencies. 

Note  that  the  symmetry  relation 

D+(w,k) D*(-w*,-k*) - (123) 

is satisfied,  and  hence  it is sufficient  to  consider  only one of the  dispersion  relations: 
D-(u,k) = 0 o r  D+(w,k) = 0. Also  note  that 

thus,  k = 0 is a saddlepoint  in  the  k  plane,  and  hence  the  roots of D(w,O) = 0 will be 
branch  points  in  the w plane.  The  location of these  branch  points  in  the  frequency 
plane is of prime  importance  in  determining  the  stability  character of the  system 
(refs. 23 to 26). Details are given  in  the  next  section  where  solutions of the  dispersion 
relation  (eq.  (116)) a r e  found. 

SOLUTIONS O F  THE DISPERSION RELATION  FOR TRANSVERSE 

WAVES  PROPAGATING  PARALLEL  TO  THE MAGNETIC FIELD 

In  this  section  the  dispersion  relation  for  propagation  parallel  to  the  magnetic  field 
is solved  for  several  different  electron  distribution  functions.  A new collisional  mode is 
found  to  be  unstable  for  some  ranges of the  plasma  parameters.  The  wave  considered is 
the  transverse-electric,   circularly  polarized  wave known in  ionospheric  work as the 
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"whistler"  wave.  In  solid-state  plasmas it is sometimes  called a "helicon"  wave.  Both 
convective  and  absolute  instabilities are found  when  the  electron  distribution  function is 
monoenergetic.  A  Lorentz  gas  with  nitrogen  neutrals is then  considered  and  instabilities 
are again  found  when a peaked  electron  distribution  function is considered. A Maxwellian 
electron  distribution  function is then  assumed,  and it is found  that  the  wave  dispersion 
predicted by the  isotropic  collision  model (ref. 48) is very  close  to  that  predicted by the 
constant  collision  frequency  model of Allis. An electron  distribution  function  consisting 
of both  peaked  and  Maxwellian  components is briefly  considered,  and  the  stabilizing 
influence of the  Maxwellian  population is demonstrated. 

Monoenergetic  Electron  Distribution 

For  the  init ial   analysis of the dispersion  relation  (eq.  (116))  it is assumed  that  the 
zero-order  electron  distribution is monoenergetic  and  solutions of the  dispersion  rela- 
tion are obtained. 
chosen s o  that  the 

D(w,k) = 1 - 

Substituting  equation  (66)  into  equation  (116)  where  the  negative  sign is 
dispersion  relation  represents  right-hand  polarized  waves  yields 

w 2 (E)2 + l [ * ( l  wkvo kvo - X coth-' X)  - coth-'X = 0 1 
where 

w v  - w 

kvO 

C X =  

v = V(Vo) 

This dispersion  relation  was  also  derived  and  solved by Suzuki  (ref.  15)  but  here a some- 
what  more  detailed  analysis of the  stability of the  waves is given. 

Note that coth-lX is a multivalued  function of X ;  therefore,  equation (125) has   an 
infinite set of roots.  However, later it will be  shown that only  those  roots on the  principal 
sheet are of physical  interest.  As vo goes  to  zero,  equation (125) approaches  the 
familiar  cold  plasma  dispersion  relation 

2 W 2 
D(w,k) = 1 - (%) 

- (  1 
p = o  

w w - w c  

consisting of the  upper  and  lower  electromagnetic  fast-wave  branches  and  the  slow-wave 
whistler  mode. 
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The  dispersion  relation  given by equation (125) has  been  solved  under  conditions 
approximating  those  in  the  ionosphere at an  altitude of 80 km,  that is, o = 2wc and 
v = 0 . 0 6 ~ ~ .  Nitrogen  exhibits a resonance  scattering (ref. 39) such  that  h = 5 a t  

mvi/2e = 1.5 eV. By  using  these  values,  the  results of figure 14 that  show  the real par t  
of the  complex  frequency as a function of k real are obtained.  The  upper,  lower,  and 
whistler  branches (U, L, and  Whl,  respectively)  deviate  only  slightly  from  their  cold 
plasma  values.  The Wh2 mode is a new collisional  mode  not  predicted by cold  plasma 
theory  and  first  recognized by Suzuki (ref. 15).  It  has a very  small  group  velocity  and 
hence  represents a plasma  resonance.  When  either  h or  vo approaches  zero,  this 
mode has  the  solution w = wc + i v  f o r  all k .  The  major  difference  between  the  solu- 
tion  in  figure  14  and  the  cold  plasma  solution is the  mapping of the  roots,  Whl  and Wh2, 

P 

0 2 4 6 8 IO 12 14 16 18 20 22 24 26 
kc/wc 

Figure 14.- Bril louin  diagram, Re(cu) p l o t t e d   a g a i n s t  k r e a l .  
Do t t ed   l i ne   r ep resen t s   h ighe r   o rde r   shee t .  
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onto  higher  order  Riemann  sheets as k becomes  sufficiently  large.  This  mapping is 
shown  for the mode  Whl  in  figure  15  where  the real k axis is mapped  into  the  com- 
plex w plane by the  dispersion  relation  with h = 0. In  order  to  understand  the 
behavior of this  root,  note that coth'lX has  a branch  cut  connecting  the  points at 
X = f l .  If as k varies,   the w root  moves  in  such a manner  that X c rosses   the  real 
axis between  +1  and -1, the  appropriate  analytic  continuation of coth-l X must  be  used. 
By writing w i n   t e rms  of A,  

w = wc + i v  + Xkv 0 (127) 

and  taking  the  branch  cut  to  be  on  the  real  axis  in  the X plane, it is seen  that  in  the 
w plane  the  cut  for k real goes  from  Re(w) = wc - kvo to  Re(w) = wc + kvo along 
the  line  Im(w) = v. Hence,  whenever  the w root   crosses  th i s  line, X must  go  onto 
another  Riemann  sheet.  For  the  case  shown  in  figure  15,  it  was  found  that  the  root 
oscillates  with  extremely  small  excursions  about  the  branch  line  Im(w) = v and  thereby 
goes  onto  successively  higher  order  Riemann  sheets.  However,  once  the  root  leaves  the 
principal  sheet,   i t  no longer  needs  to  be  considered  explicitly,  since  in  constructing a 
Green's  function, this root  would be taken  into  account by an  integration  around a branch 
cut.  This  phenomenon was explained  in  more  detail by Derfler (ref. 14) for  the  case of 
electrostatic  waves  in  an  isotropic  Lorentz  gas. 

I I I 1 I I I 
~" 

' 212 
~ 

h =  0 
vo= 1.22 J F i  

wp-  2 wc 

Y =0.06wc I 

R e  (w/w,) 

Figure 15.- Locus of r e a l  wavenmber k in   the  f requency  plane f o r  
mode Whl. Dotted  l ine  represents  higher  order  sheets.  
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In  figure  16,  results are presented  for  the  case  h = *3 and  h = *5 where  the 
real k axis is mapped  into  the  complex  frequency  plane  for  both  the  Whl  and Wh2 modes. 

. I 6- I I 1 
- vo= 1.22 JGV - 

h = 3  

- .04 1 1 1  .6 .8 I .o 1.2 

.2 .4 Re(w/wc) 

Figure 16.- Locus o f   r e a l  wavenumber k i n  t h e  complex frequency  plane 
for modes Whl and Wh2. Dot ted   l ine   represents   h igher   o rder   shee ts .  

In  figure  16(a)  the  roots  never  dip  into  the  lower half plane;  thus,  it is concluded  that no 
instabilities  exist  for  that case. In  figure  16(b)  it is seen  that  for  h = 5, the  mode Wh2 
has a branch  point  with  Re(#) =oC in  the  lower half plane  and  indicates  an  absolute 
instability,  whereas  for h = -5, the  mode  Whl  dips  into  the  negative half plane  and  indi- 
cates a convective  instability  (refs. 23 to  26). A similar  mapping  for  the  fast  electro- 
magnetic  modes  in  figure 17 shows  that  both  branches  become  absolutely  unstable  for 
h 2 -3 .  

Negative  values of h less than - 3  are seldom  realized  in  nature,  and  therefore, 
the new collisional  mode Wh2 is considered  more  important  for  this  analysis as it  goes 
unstable  for  values of h S 3. Since a value of h = 5 is characterist ic of the  resonance 
scattering  peak  near  mvi/2e = 1.5 eV in  nitrogen,  h = 5  was  chosen  to  investigate 
the  growth  rate  Im(w) of the Wh2 mode  at  k = 0. The  growth  rate is given by the 
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Figure 17.- Locus of  real wavenumber k i n   t h e  complex  frequency 

plane f o r  modes U and L. 

solution of equation (125) with k = 0, that is, by 

w - w (ihv/3) (wv - wc)  2 -2 - wp(wv  2 - oc)-l = 0 
P 

In  figure  18,  the  growth  rate Im[w(k = O q  is shown as a function of v with wp as a 
parameter.  Ins!L.Lilities  with  an  e-folding  time of 1 cyclotron  period  are  easily  obtained 
with  the  parameters w > wc and v > 0 . 2 ~ ~ .  Such  values  can  be  obtained  in  laboratory 
plasmas  in the  range of 0.1  to  10 mm Hg (13.33 to  1333  N/m2).  The  lower  left-hand 
corner  of the  diagram is typical of the  conditions  in  the  lower  ionosphere  in  which  devia- 
tions f rom a Maxwellian  equilibrium are known to  occur (refs. 49 and 50). I t  is therefore 
possible that collisional  instabilities of this  type  arise  in  nature. 

P 

Equation (128) can  be  rearranged  to  yield a third-order  polynomial  in w. The 
exact  locations of the  roots wil l  depend  on  the  plasma  parameters  chosen but for  a large 
variety of cases it is found  that  the real p a r t s  on the  roots  were  near wc and 

oc/2 rt (w:/4 + ~;)1/~.  If either v or  h goes  to  zero,  the  order of equation (128) 

is reduced by 1. The  root  with real pa r t  near wc vanishes,  and  hence  it is concluded 
that  this  mode  was  introduced by collisions. 
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Figure 18. - Growth rate Im((o) of Wh2 mode at inf ini te   wavelength as a 
func t ion   of   co l l i s ion   f requency  v. Re(w) = 'oc. 

Peaked  Electron  Distribution 

Equation (116) was  solved  for a monoenergetic  electron  distribution  function  and 
instabil i t ies  were  found  for  certain  ranges of the  slope  parameter h. In  particular, it 
was found  that  for h 7 3, there  was  an  unstable  mode (Wh2) with w wC. F o r   h ?  - 3  
three  unstable  modes, a whistler  mode  (Whl)  and  the two fast  modes (U and L), were 
found.  Hence,  one  concludes  that  collisional  instabilities of this  type  will  be  found  in a 
plasma if there  are present  (1) a background of neutrals  that  has lhl > 3 over a region 
or  regions  in  velocity  space  and (2) a sharply  peaked  electron  distribution  function  cen- 
tered  in one of these  regions. A s  was  done  previously,  the  experimental  electron-neutral 
collision  cross  section  for  nitrogen  (eq. (72)) is used. To meet  the  second  criterion, 
again  the  peaked  distribution  function  described earlier and  given by equation (73) was 
used. 

A computer  program  was  written  to  solve  the  dispersion  relation (eq.  (116)).  The 
velocity  integral  was  performed  numerically by using a Gauss  quadrature  rule. (See 
appendix  G).  The  integrand  has a branch  cut  between  the  points h = 1 and X = -1, and 
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upon  mapping this line  into  velocity  space, six distinct  branch  cuts are found.  The 
proper  contour is found by requiring  that  the real v-axis  from  zero  to  infinity  be a valid 
contour  when  k is real and  when o is on a Laplace  integral  path  (LIP).  Generally, 
the real v-axis  from  zero  to  infinity  was  found  to be a valid  contour  for  other w and  k, 
but  occasionally it was  necessary  to  deform  the  contour as described  in  appendix I. 

The real k-axis  was  mapped  into  the  complex  frequency  plane (fig. 19) to  determine 
the  locations  and  types of instabilities. A s  expected,  the new collisional  mode  was 
unstable  when s was sufficiently  large,  and  when vo was  located on the  positive  slope 
of the collision  frequency  curve. No instabilities  were  found when vo was  located on 
the  negative  slope of the  collision  frequency  curve, as numerical  difficulties  were 
encountered  before  the  half-width of the  distribution  function  could  be  made  small  enough. 
The  instability of the  mode  with  Re(w) = wc was  investigated  more  fully,  and  the  curves 
in  figure 20 giving  the  boundaries  in  the  s,vo  plane  between  the  stable,  convectively 
unstable,  and  absolutely  unstable  cases  were  obtained. For  the  points A and B in  fig- 
u re  20,  the real k axis maps  into  the  complex  frequency  plane as shown  in  figure 21. 
In  figure 22 the  electron  distribution  function is shown  plotted  for  the  points C and D in  
figure 20. 

The  value of the  collision  frequency  chosen  for  these  figures,  that is, v, = 5.26wc, 
represents  conditions  in  the  lower  ionosphere.  Note  that v, is the  collision  frequency 

Figure 1.9.- Real k axis mappeci i n t o   t h e  complex frequency  plane 
f o r  peaked  e lectron  dis t r ibut ion.   Plot  shows absolu te ly  
unstable waves. 
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Figure 21.- Real wavenumber axis mapped i n t o   t h e  complex frequency plane for 
dist r ibut ion  funct ion  parameters  on boundaries of regions  in   f igure 20. 
Points A and B. 
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Figu:e 22.- Normalized  peaked d i s t r ibu t ion   func t ion  for points  on 
boundaries of reg ions   in   f igure  20. Foints C and D. 

at infinite  electron  velocity. If the  collision  frequency is averaged  over a realist ic elec- 
tron  distribution  function,  the  average  collision  frequency  will  be on the  order of  20,. 
This  value is perhaps  on  the  high  side of the  range of values  found  in  the  ionosphere  but 
lower  values of v, will  only  change  the  strength of the  instability  and  will  not, for 
example,  cause  the  case  presented  in  figure 19 to  become stable. It should  be  noted, 
however,  that  in  the  collisionless  limit  the  collisional  mode at w = wc in  f igure 19 
vanishes,  and  the  plasma is stable.  Since  the  plasma is also  stable  in  the  collisional 
limit,  there is some  intermediate u, (and  hence a neutral  particle  density) at which  the 
collisional  mode is most  unstable. 

For either stable or convectively  unstable  waves,  the  mapping of real w into  the 
wavenumber  plane is of interest  as this case is the  steady-state  situation  often  investi- 
gated  in  the  laboratory.  In  figures 23 and 24, Brillouin  diagrams  that  result  from  such 
mappings are shown. For  comparison,  the  prediction of the  constant  collision  frequency 
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Figure 23.- B r i l l o u i n  diagram giving  Re(k)  ar.d Im(k) as a  funct ion 
of (o r e a l  for a convecti-rely unstable caEe. 

model of Allis  obtained by using  equation (10) for the collision  term is also shown. The 
value of the  collision  frequency  used  in  this  model  was  the  average  over  the  distribution 
function,  that is, equation (77). The  exact  theory  predicts a convective  instability  for  the 
case presented  in  figure  23  since  Im(k)  goes  positive  near o = oc. 

Figure  24(a) is a similar case that is stable because of the  slightly  higher  vo. 
Figures 24(b) and  24(c) are similar  to  f igure 24(a) except  that  the  collision  frequencies 
are, respectively,  one-fifth  and  one-tenth of those  in  figure  24(a).  In  figure 24(c) the 
collisionless  limit is also shown  and  from  the  sequence  figure  24(a)  to  figure 24(c) it is 
possible  to see how the  curves are approaching  the  proper  collisionless  limit. 

Comparison of the  Allis  model  and  the  exact  theory  shows that the  discrepancies 
are rather   large.   Par t icular ly   near  o = wc, the exact theory  predicts  decreased 
damping  and,  in  some  cases,  instabilities.  Hence, it is seen  that  for  non-Maxwellian 
electron  distribution  functions, it is necessary  to treat collisions  rigorously  to  obtain  the 
co r rec t  wave  dispersion. 
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Figure 24.- Concluded. 
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Maxwellian  Electron  Distribution 

A  Maxwellian  electron  distribution  (eq. (75)) was  then  assumed  and  equation (116) 
was  solved by use of the  same  collision  frequency  function.  Since  no  instabilities  were 
expected,  the real frequency axis was  immediately  mapped  into  the  wavenumber  plane  to 
obtain  the  Brillouin  diagrams  shown  in  figures  25(a)  and  25(b).  Again,  the  predictions of 
the  constant-collision-frequency  Allis  model are shown  for  comparison  purposes.  The 
average of the  velocity-dependent  collision  frequency as defined by equation (77) was 
used  in  this  model. 

The  agreement  between  these  two  models is clearly good. Several   other  cases 
were  calculated  and  the  agreement  between  the  two  models  was  similar to the   cases   p re-  
sented  here.  Hence,  it  would  seem  that if a Maxwellian  electron  plasma is being  con- 
sidered,  the  dispersion  relation  given by equation (119) should  be  satisfactory  for  most 
purposes.  One  could  then  use  the  very  fast  existing  computer  program  for  the  plasma 
dispersion  function  developed by Derfler  and  Simonen (ref. 51).  
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w = 2wc P 

- I  0 I 2 3 
Im ( kc/wc) Re ( kc/o,) 

(a) vo = 1.41fi; vm = 5.26%; (v) = 1.42~~. 

Figure 25. - Brillouin  diagram  giving Re(k) and b ( k )  as a funct ion 
of w r e a l   f o r  a Maxwellian  electron  distribution. 
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(b) vo = 2 G ;  vm = 1%; (v) = 0 . 3 4 ~ ~ .  

Figure 25.- Concluded. 

Sum of Maxwellian  and  Peaked  Electron  Distributions 

Since it was  found  that a peaked  electron  distribution  may  be  unstable, one naturally 
wonders how great would  be  the  stabilizing  influence of a Maxwellian  electron  population 
when  added  to a peaked  distribution. To  answer  this  question,  equation (78) was again 
used as the  electron  distribution  function. F o r  the  peaked  component,  parameters  were 
used  that  were known to  lead  to  an  absolute  instability,  that is, those  used  in  figure  19. 
The  stability of the  waves at various  values of (Y and v1 was  then  investigated.  The 
resu l t s  are shown  plotted  in  figure 26. From  this  f igure  i t   can  be  seen  that   the  stabil izing 
influence of the  Maxwellian  population is critically  dependent on the  temperature of the 
Maxwellian.  Since  absolute  instabilities  occur  at  zero  group  velocity,  that is, W/ak = 0, 
it is not  surprising  to  find  that  low-temperature  Maxwellians  have  more of a stabilizing 
influence  because of the  larger  number of low-velocity  electrons.  Comparison of fig- 
u r e s  26 and  12  shows  that  the  Maxwellian  population  required  for  stabilization is much 
less for  transverse  waves  propagating  parallel  to  the  magnetic  field  than  for  longitudinal 
waves  traveling  perpendicular  to  the  magnetic  field.  In  figure 27 the  electron  distribution 
function  for a case on each  boundary  in  figure 26 (points A and B) has  been  plotted.  Note 
that  both cases are very  much  dominated by the  peaked  population of electrons. 
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Figure 27.- Normalized d i s t r ibu t ion   func t ion   cons i s t ing  of peaked  and 
Maxwellian components (eq. (78)). Points  A and B i n   f i g u r e  26. 

Synopsis of Numerical  Results 

Briefly, it has  been  found that a rigorous  treatment of electron-neutral  collisions  in 
a non-Maxwellian  Lorentz  magnetoplasma  predicts a new mode as well as the  usual  modi- 
fied  collisionless  modes.  This new mode  vanishes  both  in  the  Maxwellian  and  collision- 
less limits  and  may  cause  the  plasma  to  be  unstable  under  some  conditions.  This  insta- 
bility  may be either  convective  or  absolute  and  occurs at frequencies  near  the  cyclotron 
frequency.  The  modified  collisionless  modes  were  also  found  to be unstable  for  some 
plasma  parameters .  It is known (ref. 47) that  in  the  collisionless  limit  the  transverse 
electromagnetic  waves  considered  in  this  section are stable;  therefore,  the  instabilities 
investigated  here are a resul t  of the  electron-neutral  collision  process. 
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DISCUSSION 

The  purpose of this  report   was  to  determine  r igorously  the effects of collisions on 
electron  waves  in a weakly  ionized  magnetoplasma.  The  waves  were  assumed  to  propa- 
gate  in  an  electron  plasma  with  infinitely  heavy  neutrals  and  ions. By using this model 
(usually  called  the  Lorentz  gas  model),  the  linearized  Boltzmann  equation  was  solved 
with  the  collision  integral  and  the  conductivity  tensor  was  derived.  The  dispersion rela- 
tions  for  waves  propagating  both  perpendicular  and  parallel  to  the  magnetic  field  were 
then  derived  from  Maxwell's  equations  and  solved  for a number of cases of general   inter-  
est. It was  found  that  the  plasma  supported a new c l a s s  of collisional  modes if (1) the 
collision  frequency  was  velocity  dependent,  and if (2) the  electron  distribution  function 
had a region  in  velocity  space  where  afo/av > 0. These new modes  could  be  unstable if 
a large  proportion ( s  70 percent) of the  electrons  were  located  in a region  in  velocity 
space  where  the  collision  frequency  increased (or decreased)  rapidly. 

For waves  propagating  perpendicular  to  the  magnetic  field,  that is, k'l E, the  col- 
lision  model  assumed  allows  for  an  isotropic  velocity-dependent  electron-neutral  colli- 
sion  cross  section,  and  two  uncoupled  dispersion  relations  were  derived.  One  described 
a modification of waves known in  cold  plasma  theory as ordinary  waves  since  they are 
unaffected by the  magnetic  field  in  that  limit.  The  other  described  extraordinary  waves 
and  has  slow  wave  solutions known variously as cyclotron,  Bernstein,  electrostatic, o r  
longitudinal  waves.  In  the  collisionless  limit,  this  dispersion  relation  yields  an  equation 
equivalent  to  that of Bernstein  (ref. 29), whereas  in  the  limit of zero  magnetic  field 
Drummond's  results (ref. 13) are recovered. When  both  the  collisions  and  the  magnetic 
field  vanish,  Landau's  dispersion  relation is obtained (refs. 32 and 33). 

The  collisional  dispersion  relation  for k'l B was  solved  for  several   electron  dis-  
tribution  functions.  One  series of solutions  were  damped  modes  that  were  modifications 
of the  undamped  collisionless  electrostatic  modes.  Under  some  conditions  they  could  be 
driven  unstable  at  frequencies  near  zero  and  the  hybrid  frequency.  In  addition, a series 
of new collisional  waves were found  with real frequencies  near  zero  and  near  each  cyclo- 
tron  harmonic.  Under  the  proper  conditions,  either  absolute o r  convective  instabilities 
were  possible  at  the  cyclotron  frequency  and  convective  instabilities  were  possible at the 
harmonics. 

Waves  propagating  parallel  to  the  magnetic  field  were  also  considered,  and a colli- 
sion  model  allowing a velocity  and  an  angle-dependent  electron-neutral  collision  cross 
section  led  to two uncoupled  dispersion  relations.  One  described  an  electrostatic  or 
longitudinal  wave  that  was not  affected by the  magnetic  field.  This  same  equation  was 
derived by Derfler  (ref. 14) f o r  an unmagnetized  plasma.  The  second  dispersion  relation 
described a transverse  wave,  one  mode of which is commonly  called a whistler  wave  in 
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ionospheric  work.  This  dispersion  relation  was  solved  and a new collisional  mode  was 
found near  the  electron  cyclotron  frequency. It was  found that this  mode  could  be  either 
absolutely o r  convectively  unstable  under  some  conditions. 

The  isotropic  electron  distribution  functions  used  when  solving  the  dispersion rela- 
tions  were of varying  physical  interest.  The  monoenergetic  distribution  function  was of 
interest  primarily  because it gave  relatively  simple  equations  to  solve.  Furthermore, 
the  solutions  were  very  helpful  in  showing  the  type of results  to  expect when more real- 
istic distributions  were  used.  The  peaked,  Maxwellian,  and  Maxwellian  with a bump  on 
the tail were  all of much  more  physcial   interest   since  these  distributions are quite  pos- 
sible  in  various  types of plasmas. 

To actually  observe  and  measure  the  wave  instabilities  that  this  theory  predicts, 
some  means  has  to  be  devised  to set up a known electron  distribution  function  with a peak 
of the  proper  width  and  location.  The  plasma  could  then  be  excited  at  some  frequency 
and  the  complex  wavenumber  measured. It would  not be necessary,  however,  to  actually 
observe  an  instability  to  show  the  validity of this theory,  since  it  has  been  shown  that  for 
non-Maxwellian  plasmas,  the  predicted  wave  dispersal  may  differ  greatly  from  that  pre- 
dicted by simpler  collision  models.  For  example,  experiments  that  have  been  previously 
done  in  the  Vlasov  limit  might  be  redone  in a regime  where  collisional  effects  are  impor- 
tant.  For  the  electrostatic  waves  with k'l E, one  should  look  for  decreased  damping  at 
frequencies  just  below  the  cyclotron  harmonics.  For  the  transverse  waves  with k' 11 E, 
the  decreased  damping  should  occur  precisely at the  cyclotron  frequency. If these  effects 
are  observed, it should  be  possible  to  assume  some  model  for  the  electron  distribution 
function,  for  example,  equation (78), and  vary  the  parameters  to  obtain  the  best  fit  to  the 
experimental  wave  dispersion  data.  This  procedure was followed by Fields  et al. (ref. 3) 
using  an  equivalent  temperature  approach. 

Most  experimenters  to  date  have  merely  observed  the  radiation  from  the  plasma  in 
an  attempt  to  observe  the  collisional  instabilities.  Tanaka  and  Takayama  (ref. 5) and 
Oddou (ref. 4) and  others  have  observed  anomalous  emission at the  cyclotron  frequency 
in  plasmas  containing  the  three  noble  gases:  argon,  xenon,  and  krypton.  These  gases 
are generally  called  the  Ramsauer  gases,  and  they  have a region  where  the  electron  col- 
lision  frequency  curve is very  steep. No anomalous  emission  was  observed  from  plasmas 
containing  the  other two noble gases:  helium  and neon. These  gases  have  relatively  flat 
collision  frequency  curves,  and  the  theory  given  in  this  report  would  not  predict  any  col- 
lisional  instabilities.  The  emission  from  the  Ramsauer  gases  was  called  anomalous 
since it had  an  intensity  many  orders of magnitude  larger  than  could  otherwise  be 
explained.  These  experimenters  observed  also  that the emission  occurred  in  bursts  that 
had a direct relationship  to  an  oscillation of much  lower  frequency. It seems  likely  that 
the  low-frequency  oscillation  was  setting up the  appropriate  electron  distribution  function 
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necessary  for  the  plasma  to  be  unstable at the  cyclotron  frequency. It should  be  noted 
that  the  radiation  was  observed  primarily  at  the  electron  cyclotron  frequency.  The 
theory  presented  here  predicts  an  absolute  instabil i ty at the  cyclotron  frequency  but  not 
at the  higher  harmonics.  Hence,  much  stronger  instabilities  (and  hence  more  radiation) 
would  be  expected at the  cyclotron  frequency  than at the  harmonics. 

Wachtel  and  Hirshfield (ref. 8) have  also  performed  an  experiment  demonstrating 
collisional  instabilities.  They  introduced  monoenergetic  electrons  into a microwave 
cavity  containing  xenon.  They  observed  negative  absorption  at the cyclotron  frequency 
when the speed of the  electrons  was  in a region  in  velocity  space  where  the  collision 
frequency  had a large  positive  slope. By negative  absorption  they  mean  that  the  electrons 
were  giving up energy  to the waves  in  the  cavity,  and  hence  the  waves  were  unstable. 

The  collision-induced  instabilities  investigated  quantitatively  in  this  report  can be 
understood  qualitatively by considering a very  simple  model.  Take a wave of frequency 
w = w propagating  in a magnetoplasma  consisting of monoenergetic  electrons.  For  the 
case of the  transverse  electromagnetic  waves,  right  circularly  polarized  waves  with 
k' 11 B' are  assumed,  and  for  the  electrostatic  waves  one  has k'l E with E 11 E. Assume 
that   there   are  N electrons  in  the  plasma. A little  thought wil l  show  that  in  the  begin- 
ning for  either  direction of propagation, N/2 electrons  will  be  gaining  energy  from  the 
wave  and N/2 electrons  will  deliver  energy  to  the  wave. After a given  length of time, 
At ,  le t  CG be  the  number of electrons  that  had a collision  with a neutral  while  gaining 
energy. Of those  electrons,  cG/2  will  be  gaining  (or  losing)  energy  after  the  collision 
since  the  collision  will  tend  to  randomize  momenta.  Likewise,  let CL be  the  number 
of electrons  that  have a collision  while  losing  energy.  After  time At, the  number of 
electrons  that  are  gaining  energy is 

C 

NG = (T - CG) + - 'G 'L N 'L 
2 2 2  2 2 

+-=-+" -  

and  the  number of electrons  that are losing  energy is 

If more  electrons are losing  energy,  then  the  wave  must  be  gaining  energy  and  hence is 
unstable.  Hence,  assume  that N L  > NG; equations (129) and (130) then  yield CG > CL. 
But  the  number of electrons  that  collide  in a given  time is proportional  to  the  collision 
frequency,  thus, v(v + Av) > v(v - Av).  Hence,  the  collision  frequency  must  have a 
positive  slope  for  the  plasma  to  support  an  unstable  wave at the  cyclotron  frequency. 
Earl ier ,  it was  found  that  these  wave  instabilities  were  indeed  present  only if the  slope 
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parameter  was positive  and  large  enough.  Because of the  extreme  simplicity of the 
model  considered  here, it is not surprising  that  the  agreement is qualitative in nature 
and not  quantitative. It is also  intereiting  to  note  that  this  simple  argument  predicts 
instabilities for w = wc but  not  for w = nuc (n = 2,3,4,. . .). It may  be  recalled  that 
solutions of the  dispersion  found earlier sometimes  predicted  absolute  instabilities at the 
cyclotron  frequency  but  never at any of the  harmonics. 

The  theory  given  in  this  report  appears  to  be  the  most  accurate  and  extensive  to 
date  concerning  the effects of electron-neutral  collisions on  high  frequency  waves  in a 
magnetoplasma.  The  model  assumed is that of a plasma of electrons  colliding  only  with 
infinitely  heavy  neutrals,  and  since all ion  effects are ignored,  this  theory is valid  for 
frequencies  somewhat  above  the  ion  plasma  and  ion  cyclotron  frequencies. By using  the 
techniques  described  in  this  report, it is possible  to  solve  the  dispersion  relations  for 
essentially  any  electron  distribution  function,  and by working  backward  one  might  be  able 
to  calculate  the  electron  distribution  function  or  the  collision  frequency  function  when 
given  the  experimentally  measured  wave  dispersion.  The  equations  derived  and  the 
techniques  described  in  this  report  should  be  particularly  applicable  to  wave  propagation 
through  and  radiation  from  plasmas  containing  especially  the  Ramsauer  gases (Ar, Xe, 
and  Kr)  since  the  electron-neutral  collision  cross  sections  in  these  gases  are  such  that 
large  collisional  effects on waves are both  expected  and  observed. 

CONCLUDING  REMARKS 

The  Boltzmann  equation  with  collision  integral  was  solved  and  the  wave  dispersion 
relations  for  electron  waves  propagating both parallel  and  perpendicular to the  magnetic 
field  were  obtained. A Lorentz  gas  magnetoplasma  was  the  model  assumed.  This  model 
requires  (1) that  the  ions are infinitely  heavy  and (2) that  the  electrons are colliding  only 
with  infinitely  heavy  neutrals.  Numerical  solutions  to  the  wave  dispersion  relations  were 
obtained,  and  for  both  directions  propagation  the  electron  waves  could  be  unstable if a 
large  fraction of the  electrons  had a velocity  in a region  where  the  electron-neutral 
collision  frequency  increases (or decreases)  rapidly  enough. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., May 4,  1971. 
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APPENDIX  A 

SOLUTION O F  ZERO-ORDER  BOLTZMANN EQUATION 

In  this  appendix it is shown  that  any  isotropic  distribution fo(lal) is a solution of 
the  zero-order  Boltzmann  equation  (eq. (16)) which  in  spherical  coordinates  becomes 

afo (v') 
wc - - - -vfo(F) + - v 1 fo(P)di2' 

acp 4n 

where Eo is taken  equal  to BOG3. Let   us   wri te  fo(v') as a spherical  harmonic 
expansion  in  velocity  space 

" 
" 

Substituting  equation (A2) into  equation (Al)  yields 

F o r  a nonzero v, this  relation  is   satisfied only by f = 0 for all 2 and  m  except 
2 = m = 0. Hence,  from  equation (A2), 

l ,m  

and  the  zero-order  Boltzmann  equation  with  isotropic  collisions is satisfied by any  iso- 
tropic  distribution  function.  From  equation (A3) if v = 0, one can  also  see  that  the  solu- 
tion  then  becomes  fo(v,,,vl),  but  this case is not  considered  in this report .   This   same 
technique  can  be  applied  to  the  zero-order  Boltzmann  equation  with  anisotropic  collisions 
(eq. (81)) to  show  that its solution is also  any  isotropic  distribution  function fo(l.'l). 
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APPENDIX  B 

and 

DERIVATION O F  FIRST-ORDER DISTRIBUTION  FUNCTION 

FOR  ISOTROPIC  SCATTERING 

In  this  appendix  the  equations 

i ( w y  - k' F)fl + df 1 = h(7) 
7 

are solved  to  obtain  the  solution  given by equation (26). By direct  substitution,  it   is  easily 
shown  that  equation  (B2) is satisfied by 

where 

To  solve  equation  (Bl),  first  find  the  solution of the  homogeneous  equation 

Rearranging  yields 

and  the  solution of this  equation is given by 

Note that I F ( T ) ~  is not a function of T as can be  shown from  equation  (B3),  and  hence 
the  term w,(v) = w - iv(v)  may  be  extracted  from  the  integral. Now by using  the 
method of variation of parameter,  it is assumed  that 



APPENDIX B - Continued 

is a solution of equation  (Bl)  and, as a result, 

fH(r) = h[?(7)1 
dT 

After  integrating, 

and  equation (B8) then  becomes 

Let T = T solve  for  the  constant,  and  obtain 0' 

which  when  substituted  back  into  equation  (Bll),  yields 

Then  using  equation (B7) yields 

But T~ is arbi t rary so  let T~ be -00, and  since w is on a Laplace  integral  path, it 
can  be  seen  from  equation (B14) that 

fH(TO) 
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Equation (B13) then  becomes 

Let 

and  from  equation (B3) 

ijc(7') = D(Uct) C(7) 

?(T") = D ( W c t ' )  ' T(7) 

Equation (B16) then  becomes 

The  integral  in  the  exponential is evaluated  and a new tensor is obtained 

and  then by defining q = wC7,  equation (B19) becomes 

where 

From  equation (21), 
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and h[B(q) - must now be  found.  The  integral  term is a function of 171 only  and 
s o  is unchanged.  Also, fo is a function of lrl; thus, 

Equation (B22) then  becomes 

h[E(v) * = 

and  substituting  equation (B24)into  equation  (B21)  yields 

Taking  the  integral dW of this  equation  and  rearranging  yields s 

where 

Substituting  this  equation  back  into  equation (B25) leads  to 

Thus,  equation (26) has  been  obtained as desired. 
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APPENDIX C 

MAXWELL'S  EQUATIONS AND WAVE DISPERSION  RELATIONS 

Maxwell's  equations  may  be  written 

V X E = - -  - ai3 
a t  

1 " a E  
- V X B = j  + E  
IJ.0 O a t  

The  Fourier  and  Laplace  transforms of these equations are taken as defined  earlier  and 
the  following  equations are obtained: 

Electrostatic  Approximation 

First, consider  what is commonly  called  the  electrostatic  approximation.  This 
approximation is valid  for  waves  whose electric field is very  nearly  parallel  to  the  prop- 
agation  vector k'. The  dispersion  relation  can now be  derived  from  equation (C5). The 
charge  density  in  the  plasma is given by 

However, for  the case being  considered,  the  ion  density pi is exactly  canceled  by  the 
zero-order  electron  density pe. The  part   that   remains is a polarization  charge  density 



APPENDIX C - Continued 

that can be  written as the  gradient of a polarization  vector 

p = -v P = -en 1 fl(F)d  v 
- 3 (C 10) 

Now define a polarization  tensor by 5 = 7 * E. Taking  the  transforms as defined earlier 
yields 

- 

iif - iT . E = p = -en 1 il(T)d  v 
- 3 

A 

and  from this equation 71 may be obtained  when  given f l .  Substitute  equation  (C11)  into 
equation (C5) to  obtain  the  dispersion  relation 

where I is the  unit  tensor. It was  assumed earlier that k' and E' were  parallel  and 
at  this point  it is further  assumed,  without loss  of generality,  that k' = kgl.  Then, 

"11 D(w,k) = 1 + - = 0 
E 
0 

This  equation is the  dispersion  relation  used  to  describe  electrostatic o r  longitudinal 
waves.  In a plasma  Landau  waves  (without  magnetic  field)  and  cyclotron  waves  (with 
magnetic  field)  are  in this class.  

Electromagnetic  Waves 

For  this  case  nothing is assumed  about  the E and  vectors of the  waves. How- 
ever,  the  perturbation  distribution  function f,(?) is still assumed  to be  known, and by 
using 

an  expression  for  the  current  density  in  the  plasma is obtained.  Then  the  conductivity 
tensor 0 defined by 

" - j = u - E = -en 1 V'fl(T)d3v 

is obtained.  Next  combine  equations  (C7)  and  (C8)  to  obtain  the  equation 
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But  for  this  to  be  true,  the  equation 

must first be satisfied.  Equation (C17) gives  the  relationship  between w and  k  and 
is the  wave  dispersion  relation  describing  the  waves  propagating  in  the  medium  whose 
conductivity  tensor is E. 



APPENDIX  D 

SIMPLIFICATION O F  CONDUCTIVITY  TENSOR FOR El B' 

In  this  appendix  the  general  conductivity  tensor  given  by.equation (34) is reduced  to 
the  form  given by equation  (42).  This  result is exact  and  no  approximations are made. 
The  steps  needed  to  obtain  equation (42) necessarily  involve  large  amounts of algebraic 
manipulations of a generally  straightforward  nature;  thus only a brief  outline of the  pro- 
cedure is given  here. First, G(v) given by equation (36) is evaluated,  and  from 
appendix  E 

Equation (34) then  becomes 

W26 - 
47rwc 

- -E+ s, vwvvf&v, 

Now consider  each  component of the  tensor in turn.   Firs t  u13 = u23 = a31 = 032 = 0. 

Next  consider u33 where  it   can  be  seen  that  the  second  term  vanishes,  and by using  an 
integral  given  in  appendix E 

is obtained.  For o12 and u21 again  integrals  worked  out  in  appendix E are used  to 
find 

U12 = -a21 - - - 

k2 
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u22 = 4niwpE 2 v3f' + .[I. 1 
+ 1)(U + 3) 1 

Finally,  for all, 

n 
r 

L 

but after rearranging one  can  obtain 

7 

dv 

The  algebra  necessary  to  derive  these  equations is quite  extensive  but  generally  straight- 
forward.  One  can  show  the  equality of equations (D6) and (D7) most  easily by subtracting 
the two and  showing  that  zero is obtained. At  one  point it is helpful  to  make  use of the 
identity 

This  equation  can  easily  be  proved by using  equations (29) and (30) for  the  tensors and 
showing  that  both  sides  yield  the  same  result. 
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APPENDIX  E 

THE EVALUATION O F  SEVERAL  PERTINENT  INTEGRALS 

In this appendix  several  integrals  used  in  appendixes D and F are evaluated  and  the 
rest are stated  without  proof as they are all done  in a similar  manner. 

Consider  first  the  integral 

where 

and 

Let F = - and  rewrite  equation  (El)  to  obtain 
-c g.z 

wC 

This  integral is easily evaluated  and  yields 

where j (Fv) is a spherical  Bessel  function of the first kind  given  in  terms of the  ordi- 
nary  Bessel  function of the  first  kind by 

0 
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which  can  be  written as 

Then  the  following  equation is easily  obtained: 

In a similar  manner, it can  be  shown  that 

Now investigate  integrals of the  type 

- .  
F(q)dq  

In all the  integrals of this  type  needed  in  appendixes  D  and F, it is possible  to  expand  the 
F(q) in  powers of sin  (q/2)  and  then  to  evaluate  the  integral  in  terms of a ser ies .  T o  
demonstrate,  consider 

After  using  equation (E3), equation  (E9)  becomes 

I3 = Ji e-iqq  4njo(Fv)dq 

But  for  the case being  considered,  that is, k' = k6  one can  show F = (2k/wC)sin(q/2). 
After  expanding  jo(Fv)  in its series representation,  equation  (E10)  becomes 

1' 

The  integrals  in  equation  (Ell) are Laplace  transforms  and  were  evaluated  by  Bateman 
(ref. 52).  Using  his  results  yields 



APPENDIX E - Continued 

where,  for  convenience,  the  symbolic  notation 

has  been  used  where 

77= 
w - iv(v) 

wC 

The  remaining  integrals  are  solved  in a similar  manner;  therefore,  they  wil 
he re  without  proof.  The list of integrals  follows: 

1 e-'dS2 = 4 ~ r j ~ ( F v ) e - ~ ~ ~  

S " I  e-iqq  j2(Fv)dq = 

86 



APPENDIX  E - Concluded 

low sin 9 cos  - j (Fv)dq = rp 
2 2 2  

e-iqq c o s 2 9  2 2  j (Fv)dq = -$ + 1 ) ( 2  2 + 3) ] + (Zr fu]} (E24) 
U + 1  



APPENDIX F 

COLLISIONAL  CYCLOTRON  DISPERSION  RELATION  FROM 

ELECTROSTATIC  APPROXIMATION 

In  appendix C i t  is shown  that  for  waves  that are nearly  longitudinal,  the  electro- 
static  approximation  yields  the  dispersion  relation 

9 1  
€ 0  

D(w,k) = 1 + - = 0 

where 

From  equation (26), an  equation for the  first-order  distribution  function il is obtained 
which  when  used  in  equation  (F2)  yields 

Recalling  that = BG3 and k' = kGl and  using  the  integrals  given  in  appendix E 
results  in 

where 

and 

88 



APPENDIX F - Concluded 

Substituting  equation (F4) into  equation (Fl) yields 

03 vfbG(v)w, 

o + ivG(v) 
D(w,k) = 1 + 4 r  dv 

and  the  dispersion  relation  given  in  equation (51) has  been  found  but  in a much  simpler 
manner.  The  more  complicated  derivation  was  used earlier to show how the  electro- 
static dispersion  relation  could  be  obtained  from  the  more  complete  theory. 
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APPENDIX G 

QUADRATURE RULE FOR WEIGHT FUNCTION exp ( d )  ON [o,~] 

In  several  of the  dispersion  relations  solved  in  this  report, it was  necessary  to 
evaluate  integrals  numerically.  These  integrals  were all of the  form 

and  were  performed by a Gauss  quadrature  rule. This rule  enables  us to write 

It is easily  shown  that i f  wL and xL have  been  chosen  correctly,  this  equation is exact 
if f(x) is a polynomial of order   less   than 2N. From  Gallant (ref. 53) and  Wilensky 
(ref. 18) the  weights wL and  the  nodes xL are used  for N = 20 and 40. These  values 
are given  in  table 11. 

TABLE 11.- WEIGHTS AND NODES FOR THE QUADFWXFG3 RULF: USING THE WEIGH!I 

FUNCTION 2 e x p ( - 2 )  ON ~ , c L ]  
J;; 

(a) 20-point d e  

X 
2 

0.14279509699918263-01 

0.3294333560642905~ 00 

0.746313003921927OE-01 
0.18086156305803973 00 

0.51605054306153223 00 
0.73625545758089143 00 
0.985887357503752853 00 
0.12612890161027673 01 
0.15595796452096613 01 
0.1878561919302981E 01 
0.22167941653876643 01 
0.2573577820826277E 01 
0.29489897467872353 01 
0.33439813798616403 01 
0.37605999329107703 01  
0.4202442600421132E 01 
0.46756088477944803 01 
0.5190901686974998E 01 

0.64705583870645743 01 
0.57699851655677623 01 

W 2 

0.41262480953540633-01 
0.9401377007261654~-01 
0.13986731274032063 00 
0.1704175033159441E 00 
0.17649482600028383 00 
0.15457918397722823 00 
0.11230672911046193 00 
0.66048287427064403-01 
0.30619449258661953-01 
0.1088291653324355~-01 
0.2879302149689494~-02 
0.5488989148150679E-03 
0.72612837583354163-04 
0.6366757009378284E-05 
0.3487635540692594E-06 
0.11008930978300793-07 
0.17784234174418573-09 

0.24484288210575763-14 
0.59930734545940193-18 

0.12140747655433463-11 
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T B U  11.-  WEIGHTS AND NODES FOR THE QUADFATLEE RULE USING THE WEIGHT 

(b) 40-point rule  

X 
2 

0.5150010356393314E-02 
0.2707802494829413E-01 
0.66298590211429963-01 
0.12243960159883463 00 
0.19497868093068823 00 
0.2832755895057396E 00 
0.3866018422176653E 00 
0.5041705134328489E 00 
0.63516459380600053 00 
0.77876237928286773 00 
0.93415896522826453 00 
0.110058348E138671~ 01 
0.1277312213015507E 01 
0.1463677t376957118E 01 
0.1659075877002548~ 01 
0.18629679598650273 01 

0.2294422931706635~ 01 
0.2074884066030345E 01 

0.2521251984268593E 01 
0.2755106998376953E 01 
0.29957919233812123 01 
0.32431792565197093 01 
0.3497211327571455E 01 

0.40253454524039713 01 

0.4581276943399332~ 01 
0.4870410105599751E 01 
0.5167617222469367E 01 
0.5473558861103993E 01 
0.57890945604178603 01 
0.61153452328989523 01 
0.6453788427291654E 01 
0.6806409661424949E 01 

0.7566388429073037E 01 
0.7983778287554144E 01 
0.84383115413551733 01 
0.8943841355010714E 01 
0.95704811788904053 01 

0.37579028861140783 01 

0.4299714023322116~ 01 

0.71759556802316763 01 

W 
2 

0.1490554725118071E-01 

0.5365120033130722E-01 
0.7162848482763389E-01 
0.8748201803249430E-01 
0.9990783959338579E-C1 
0.1074557174139692E 00 
0.10888006888509893 00 
0.10359389207741403 00 
0.9206274103552843E-01 
0.7592560230950505E-01 

0.4009918101~95804E-01 

0.1437098784698673~-01 

0.3452733473086753E-01 

0.5769699113930270~-01 

0.2529440279616882~-01 

0.72976962639425313-02 
0.32868764496153933-02 
0.13029419776648213-02 
0.4510407826591482E-03 
0.13526492805563343-03 

0.7649469079803097E-05 
0.1416940072635054E-05 
0. U93302752467988E-06 
0.2806496911831388E-07 

0.2470041550273338E-09 

0.8593168390112723E-12 
0.3413713673581817E-13 
0.1008670314083280E-14 
0.21486846777409923-16 
0.3173178811113663E-18 
0.30885968155262133-20 
0.18518640655605403-22 
0.62219430524921953-25 

0.6430445279019888E-31 
0.10174669445079223-34 
0.13494045696854993-39 

0-348533073719393lE-04 

0.2933096982986261~-OF 

0.165036160948531.5~-10 

0.10173073762579663-27 
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ASYMPTOTIC EXPANSION OF G(v) 

It  has  been  pointed  out  that  one  can  write 

Meijer (ref. 31) gives  the  theory of the  asymptotic  expansion of the  generalized  hyper- 
geometric series F , and after specializing  his  results  to  the 2F3 in  equation (Hl), 
one  obtains 

P q  

where 

P = -  
kv 
w C  

17= w - iv(v) 
w C  

A = l - - + - - -  h2 h4 h6 + - + .  . . 
P2 P4  P6  P8 

The  h   terms are given by the  recurrence  relation 
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where 

hl = 1 ( H8) 

(1 odd) 

(1 even) 

and B1(x) are the  Bernoulli  polynomials. 
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APPENDIX I 

NUMERICAL  CONTOUR  INTEGRATION 

Let us  consider  the  contour  integral  of some  function F 

I = IC F(z)e-Z2  dz 

with the contour  given by 

. = x ( ' +  x, y y  + x 

where 

Note  that x is real, and  one  can  easily  show  that Max[Im(z)l = y, at x = xm. A 
plot of this  contour is shown  in  figure 28. Substituting  equation (12) into  equation (11) 
yields 

I = IC F(z)e-Z dz 
2 

F r o m  appendix  G,  the  Gauss  quadrature  rule is 
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Re(z) 

Figure 28.- Normalized mapping of con tour   i n  complex z plane. 
Note that  Re(z) = x. 

and  applying  this  rule  to  equation (14) yields 

2 F(z)e-Z  dz = 
2 

1=1 

where 

w; = WL 

By  using  the  technique  described, it is possible  to  do  very  accurate  numerical  contour 
integration by means of the  Gauss  quadrature  rule.  Note  that no rapidly  oscillating 
t e r m s  are introduced  in  the  integrand of equation (14). For   bes t   resu l t s  it was found 
that y should be kept  small,  for  example, y < 0.5. 
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DERIVATION O F  TRANSFER COLLISION  CROSS  SECTION $(v) 

F rom the definition, 

and  use of the  Legendre  polynomial  expansion 

yields 

From  f igure 29 it can  be  seen  that 

cos  x = cos  0' cos e + sin 0' s in  0 cos (cp' - cp) 

which  allows  the  use of the  addition  formula 

k=  -n 

Then  evaluate the integrals  in  equation (53) and  obtain 

QL m = 4+ 0 - 2) 2 ? + 1  

This  equation is identical to that  obtained  from  substituting  equation (52) into  Allis' 
transfer  coll ision  cross  section 

Ql(v) = 27r 1; o(x,v) E - PL(cos x )  s in  x dx 1 

(54) 
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Figure 29.- Geometry  of  collision  velocities v and v" before 
and  after  impact,  respectively. 

"f 

Thus it is concluded  that 

for  all m as claimed  in  the  text. 
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CONDUCTIVITY  TENSOR FOR k' 11 E WITH 

ISOTROPIC  SCATTERING 

In  this  appendix  the  conductivity  tensor  from  equation (34) will be  obtained for the 
case of propagation  parallel  to  the  magnetic  field. By taking E(( g7 that is, = kg 
equation (38) yields 

3' 

w - kv3 
@(q,V') = i 'p 

V 

w C  

Substituting  equation  (Kl)  into  equation (34) yields 

q 3  - - u23 = a31 = cr32 = 0 
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1 - X coth- X dv 1 
533 = - 

k2 1 + c0th-l  X 
kv 

'. The  angular  part  of the  integrals  in  equations (K6) and (K7) can  be  easily  evaluated  but 
will not  be  needed at this  time. 
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PROOF  THAT  THE ANISOTROPIC  DISPERSION RELATION  YIELDS 

THE  ISOTROPIC  DISPERSION  RELATION IN THE  LIMIT 

OF ISOTROPIC  SCATTERING 

In this  appendix  the  dispersion  relation  expressed by equation (108) is reduced  to 
the  one  in  equation  (116)  in  the  limit of isotropic  collisions. For  isotropic  collisions, 
that is, u = u(v), it can  be  seen  from  equation (88) that all the v2 t e r m s  are equal. 
Hence let v2 = v(v) for  all 2 and  equation  (108)  then  yields 

n 

D (w,k) = 1 - Iom g,(v) v2fb(v)  dv wk 

where 

2 3 8  
g*= -  - - 

n2 - 1 
3x, - 5x, - 7h* - - (2n + 1)x, - . . .  . . .  

and 

Take now the  par t  of the  integrand  in  brackets  in  equation (116) and  expand  it  in a series 
in  powers of h i 1  to  obtain 

x;2n 
+ -  + -  + .  . . +  + . . (L2) (2n + 1)(2n f- 3) 

Convert   this  asymptotic  series  into a continued  fraction by the  method of Viskovatoff as 
described by Khovanskii  (ref. 43) to  obtain 

2 3 8 X, = - - - n2 - 1 
- (an + l )h ,  - f . . .  

3x* - 5x, - 7x* - . . .  

Hence  equation (116) yields  an  equation  identical  with  equation  (Ll).  It  has  therefore 
been  shown  that  equations (108) and (116) are identical  in  the  limit of isotropic  collisions. 
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APPENDIX M 

SIMPLE DERIVATION OF DISPERSION RELATION 

FOR WAVES WITH E 11 g 

In this appendix  the  dispersion  relation  for  propagation  parallel  to  the  magnetic 
field is derived  in a simpler but less rigorous  manner  (ref. 45) than  was  used earlier. 
The  assumption is made  that  the  waves are transverse  in  the  course of the  derivation; 
therefore,  only  the  dispersion  relation for the  transverse electric waves is obtained. 
For  isotropic  coll isions  in a Lorentz  gas,  the  Boltzmann  equation is written as 

The  ansatz is made 

f ( 7 )  = fo(iT) + fl(7) 

- 
E = O + E 1  

E = E  0 + E l  J 
and  the  zero-  and  first-order  equations fo r  fo  and f l  a r e  obtained.  The  zero-order 
equation  has as its solution  any  isotropic fo( 171) (appendix A), and  the  first-order 
equation is solved by means of Fourier  and  Laplace  transforms  in  space  and  time  based 
on the  wave  representation  exp(iwt - iE - F). Taking Bo = BOG3 and  writing  the first- 
order  equation  in  spherical  coordinates  then  yields 

- 

Expanding  the  dot  product  in  component  form  results  in 

where E, = Ex f iEy are the  fields of the  right-  and  left-hand  polarized  waves,  respec- 
tively. Now the  solution 

10 1 
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APPENDIX  M - Continued 

is assumed  and  from  equation (M3) 

ie E*fb sin 8 
f , = - -  2m w U  T wC - kv COS e 

is easily  obtained.  From  Maxwell's  equations of electrodynamics,  the  current  density is 

which  yields 

j* = -25  en  v  sin Of, dB dv = s 3  2 [$)2 - g i u 0 E *  

Then,  substituting  equation (M6) into  equation (M8) yields 

irine2E* s- s ir v s in  Of; dO dv 3 3  

m 0 0 w u  'F w c  - kv cos 8 

Equation (M9) then  gives  the  dispersion  relation 

ck s- s v3  sin30fb 
D,(w,k) = 1 - (-) + - dB dv = 0 

W 0 0 w U f  wc - kv cos 0 

where 

Evaluating  the  integral  over 0 then  yields 

2 27iw 2 
D,(w,k) = 1 - (e) w + 2 wk Iom v2fb l*  + (1 - X:)coth-' x.] dv 

where 

w u  f 0 
x =  C * kv 
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APPENDIX M - Concluded 

which is the  same as equation  (116).  This  derivation  demonstrates that the  integral   term 
in  the  Boltzmann  equation (eq. (79)) does not contribute  to  the  dispersion  relation  for 
transverse  waves  propagating  parallel  to  the  magnetic  field.  Note  the  integral  vanishes 
when  obtaining  equation (M6). From  equation (M10) it can  also  be  seen how D-(w,k) 
and D+(w,k) are associated  with  right-  and  left-hand  polarized  waves,  respectively. 



APPENDIX  N 

REDUCTION O F  EQUATION (116) TO  FRIED FUNCTION 

REPRESENTATION IN THE  APPROPRIATE  LIMIT 

In  this  appendix  the  Fried  function  representation of the  dispersion  relation 
(eq.  (119)) is obtained  from  equation (116) under  the  assumption of (1) a constant  collision 
frequency  and (2) a Maxwellian  electron  distribution.  Integrating  equation (116) by pa r t s  
yields 

n 

ck 2 4TUL 
D*(w,k) = 1 - (;) - To* vfo coth- 1 X, dv 

If fo is Maxwellian, 

9 

vf -” v6 f ’  
0 -  2 0 

and  the  integral  in  equation (Nl)  becomes 
n 

I 5 low vfo  coth- 1 X, dv = - - 2 1; f b  coth- 1 X, dv 

Doing a second  integration by parts  and  substituting  equation (75) for  fo results  in 

where 

w f W  v c  
‘0 = kvo 

The  integrand is an  even  function;  thus, 
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APPENDIX N - Concluded 

Expand  equation (N5) in  partial  fractions  to  obtain 

Putting  x - -x in  the  second  integral  yields 

Since  the  dispersion  relation is defined  for k real and w on a Laplace  integral  path, 
equation (N7) is the  proper  equation  for  Im(Xo) < 0. For  other  values of ho, the 
analytic  continuation is used.  Hence  define 

and  equation (N7) then  becomes 

1 = " P O )  
47W0 

Substituting  equation (N9) into  equation  (Nl)  yields 

W 2 
D*(w,k) = 1 - wv wc 

kv 

and  hence  gives  equation  (119).  Fried  and  Conte (ref. 35) define 

and by using  equation (N8) one  can  show 

'('0) = z* F( x* 0) 

Equation (N10) can  then  be  written  in  terms of the  Fried  function  (plasma  dispersion 
function) if  desired. 
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